




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南楚雄州南华县民中数学高一下期末综合测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.棱长为2的正方体的内切球的体积为()A. B. C. D.2.设集合,,则()A. B. C. D.3.已知且,则的取值范围是()A. B. C. D.4.如图所示,垂直于以为直径的圆所在的平面,为圆上异于的任一点,则下列关系中不正确的是()A. B.平面 C. D.5.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组,如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6 B.8 C.12 D.186.设等比数列的前项和为,若,则()A. B. C. D.7.已知A(2,4)与B(3,3)关于直线l对称,则直线l的方程为().A.x+y=0 B.x-y=0C.x-y+1=0 D.x+y-6=08.某班的60名同学已编号1,2,3,…,60,为了解该班同学的作业情况,老师收取了号码能被5整除的12名同学的作业本,这里运用的抽样方法是()A.简单随机抽样 B.系统抽样C.分层抽样 D.抽签法9.已知分别为的三边长,且,则=()A. B. C. D.310.设向量,若,则实数的值为()A.1 B.2 C.3 D.4二、填空题:本大题共6小题,每小题5分,共30分。11.如图,已知扇形和,为的中点.若扇形的面积为1,则扇形的面积为______.12.已知等边,为中点,若点是所在平面上一点,且满足,则__________.13.不等式的解集是_________________14.关于函数有下列命题:①由可得必是的整数倍;②的图像关于点对称,其中正确的序号是____________.15.一船自西向东匀速航行,上午10时到达一座灯塔的南偏西距塔64海里的处,下午2时到达这座灯塔的东南方向的处,则这只船的航行速度为__________海里/小时.16.设函数f(x)是定义在R上的偶函数,且对称轴为x=1,已知当x∈[0,1]时,f(x)=121-x,则有下列结论:①2是函数fx的周期;②函数fx在1,2上递减,在2,3上递增;③函数f三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.若向量=(1,1),=(2,5),=(3,x).(1)若,求x的值;(2)若,求x的值.18.已知函数.(Ⅰ)求的定义域;(Ⅱ)设是第一象限角,且,求的值.19.已知函数,的部分图像如图所示,点,,都在的图象上.(1)求的解析式;(2)当时,恒成立,求的取值范围.20.如图所示,在直三棱柱(侧面和底面互相垂直的三棱柱叫做直三棱柱)中,平面,,设的中点为D,.(1)求证:平面;(2)求证:.21.已知A、B两地的距离是100km,按交通法规定,A、B两地之间的公路车速x应限制在60~120km/h,假设汽油的价格是7元/L,汽车的耗油率为,司机每小时的工资是70元(设汽车为匀速行驶),那么最经济的车速是多少?如果不考虑其他费用,这次行车的总费用是多少?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
根据正方体的内切球的直径与正方体的棱长相等可得结果.【题目详解】因为棱长为2的正方体的内切球的直径与正方体的棱长相等,所以直径,内切球的体积为,故选:C.【题目点拨】本题主要考查正方体的内切球的体积,利用正方体的内切球的直径与正方体的棱长相等求出半径是解题的关键.2、D【解题分析】试题分析:集合,集合,所以,故选D.考点:1、一元二次不等式;2、集合的运算.3、A【解题分析】分析:,由,可得,又,可得,化简整理即可得出.详解:,由,可得,又,可得,化为,解得,则的取值范围是.故选:A.点睛:本题考查了基本不等式的性质、一元二次不等式的解法,考查了推理能力与计算能力,属于中档题.4、C【解题分析】
由平面,得,再由,得到平面,进而得到,即可判断出结果.【题目详解】因为垂直于以为直径的圆所在的平面,即平面,得,A正确;又为圆上异于的任一点,所以,平面,,B,D均正确.故选C.【题目点拨】本题主要考查线面垂直,熟记线面垂直的判定定理与性质定理即可,属于常考题型.5、C【解题分析】试题分析:由直方图可得分布在区间第一组与第二组共有21人,分布在区间第一组与第二组的频率分别为1.24,1.16,所以第一组有12人,第二组8人,第三组的频率为1.36,所以第三组的人数:18人,第三组中没有疗效的有6人,第三组中有疗效的有12人.考点:频率分布直方图6、C【解题分析】
根据等比数列性质:成等比数列,计算得到,,,计算得到答案.【题目详解】根据等比数列性质:成等比数列,设则,;故选:C【题目点拨】本题考查了数列的前N项和,利用性质成等比数列可以简化运算,是解题的关键.7、C【解题分析】试题分析:两点关于直线对称,则,点与的中点在直线上,,那么直线的斜率等于,中点坐标为,即中点坐标为,,整理得:,故选C.考点:求直线方程8、B【解题分析】由题意,抽出的号码是5,10,15,…,60,符合系统抽样的特点:“等距抽样”,故选B.9、B【解题分析】
由已知直接利用正弦定理求解.【题目详解】在中,由A=45°,C=60°,c=3,由正弦定理得.故选B.【题目点拨】本题考查三角形的解法,考查正弦定理的应用,属于基础题.10、B【解题分析】
首先求出的坐标,再根据平面向量共线定理解答.【题目详解】解:,因为,所以,解得.故选:【题目点拨】本题考查平面向量共线定理的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、1【解题分析】
设,在扇形中,利用扇形的面积公式可求,根据已知,在扇形中,利用扇形的面积公式即可计算得解.【题目详解】解:设,扇形的面积为1,即:,解得:,为的中点,,在扇形中,.故答案为:1.【题目点拨】本题主要考查了扇形的面积公式的应用,考查了数形结合思想和转化思想,属于基础题.12、0【解题分析】
利用向量加、减法的几何意义可得,再利用向量数量积的定义即可求解.【题目详解】根据向量减法的几何意义可得:,即,所以.故答案为:0【题目点拨】本题考查了向量的加、减法的几何意义以及向量的数量积,属于基础题.13、【解题分析】
可先求出一元二次方程的两根,即可得到不等式的解集.【题目详解】由于的两根分别为:,,因此不等式的解集是.【题目点拨】本题主要考查一元二次不等式的求解,难度不大.14、②【解题分析】
对①,可令求出的通式,再进行判断;对②,将代入检验是否为0即可【题目详解】对①,令得,可令,,①错;对②,当时,,②对故正确序号为:②故答案为②【题目点拨】本题考查三角函数的基本性质,属于基础题15、【解题分析】由,行驶了4小时,这只船的航行速度为海里/小时.【题目点拨】本题为解直角三角形应用题,利用直角三角形边角关系表示出两点间的距离,在用辅助角公式变形求值,最后利用速度公式求出结果.16、①②④【解题分析】
依据题意作出函数f(x)的图像,通过图像可以判断以下结论是否正确。【题目详解】作出函数f(x)的图像,由图像可知2是函数fx的周期,函数fx在1,2上递减,在2,3上递增,函数当x∈3,4时,f(x)=f(x-4)=f(4-x)=故正确的结论有①②④。【题目点拨】本题主要考查函数的图像与性质以及数形结合思想,意在考查学生的逻辑推理能力。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1).(2)1.【解题分析】
(1)利用向量平行的代数形式得到x的值;(2)由数量积的坐标形式得到x的方程,解之即可.【题目详解】(1)∵∥,∴2x﹣15=0,解得x=.(2)8﹣=(6,3),∵(8﹣)•=30,∴18+3x=30,解得x=1.【题目点拨】平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.18、(Ⅰ);(Ⅱ).【解题分析】
(1)本题可根据分式的分母不能为得出,然后解即可得出函数的定义域;(2)本题首先可根据以及同角三角函数关系计算出以及的值,然后对函数进行化简,得到,最后通过计算即可得出结果.【题目详解】(1)由得,,所以,,故的定义域为.(2)因为,且是第一象限角,所以有,解得,.故.【题目点拨】本题考查三角函数的性质、三角恒等变换的应用,考查的公式有、、、二倍角公式以及两角差的余弦公式,考查化归与转化思想,是中档题.19、(1);(2)【解题分析】
(1)由三角函数图像,求出即可;(2)求出函数的值域,再列不等式组求解即可.【题目详解】解:(1)由的图象可知,则,因为,,所以,故.因为在函数的图象上,所以,所以,即,因为,所以.因为点在函数的图象上,所以,解得,故.(2)因为,所以,所以,则.因为,所以,所以,解得.故的取值范围为.【题目点拨】本题考查了利用三角函数图像求解析式,重点考查了三角函数值域的求法,属中档题.20、(1)见解析;(2)见解析.【解题分析】
(1)由可证平面;(2)先证,再证,即可证明平面,即可得出.【题目详解】(1)∵三棱柱为直三棱柱,∴四边形为矩形,∴E为中点,又D点为中点,∴DE为的中位线,∴,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 模具购销合同协议书模板
- 二人股权协议书合同
- 安全旅游课件
- 制造业工厂智能化生产升级方案
- 企业数字化转型战略规划报告
- 充电柜合同协议书范本
- 浅谈猪链球菌病的防治
- 房建工程合同协议书范本
- 中国适老化改造行业发展现状、市场前景、投资方向分析报告咨询
- 租房协议书合同范本英文
- 人保农险理赔试题
- Machine-Cmk-设备能力指数Cmk分析表
- 心理健康教育特色学校建设路径
- 2025年全国保密教育线上培训考试试题库【完整版】附带答案详解
- (二模)2025年5月济南市高三高考针对性训练英语试卷(含答案解析)
- 修脚师劳动合同(新标准版)6篇
- TCHSA-012-2023-儿童口腔疾病治疗中静脉镇静技术规范
- 福建农信招聘笔试真题2024
- 三方合伙开店协议合同
- 2025年新疆中考第一次模拟化学试题(含答案)
- ISO27001:2022信息安全管理体系全套文件+表单
评论
0/150
提交评论