




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省天略外国语学校数学高一第二学期期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.记为实数中的最大数.若实数满足则的最大值为()A. B.1 C. D.2.已知2弧度的圆心角所对的弧长为2,则这个圆心角所对的弦长是()A. B. C. D.3.在中,角A,B,C所对的边分别为a,b,c,若,,则的值为()A. B. C. D.4.在等差数列中,,则数列前项和取最大值时,的值等于()A.12 B.11 C.10 D.95.变量满足,目标函数,则的最小值是()A. B.0 C.1 D.-16.已知正四棱锥的底面边长为2,侧棱长为,则该正四棱锥的体积为()A. B. C. D.7.在△中,角,,所对的边分别为,,,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件8.已知函数的值域为,且图像在同一周期内过两点,则的值分别为()A. B.C. D.9.若,,且与夹角为,则()A.3 B. C.2 D.10.已知圆与圆有3条公切线,则()A. B.或 C. D.或二、填空题:本大题共6小题,每小题5分,共30分。11.在中,,,为角,,所对的边,点为的重心,若,则的取值范围为______.12.已知向量夹角为,且,则__________.13.若扇形的周长是,圆心角是度,则扇形的面积(单位)是__________.14.已知正方体中,,分别为,的中点,那么异面直线与所成角的余弦值为______.15.在数列中,按此规律,是该数列的第______项16.在中,内角A,B,C所对的边分别为a,b,c,若,,b=1,则_____________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)若,求函数有零点的概率;(2)若,求成立的概率.18.如图,在三棱柱中,为正三角形,为的中点,,,.(1)证明:平;(2)证明:平面平面.19.已知数列的前项和,且,数列满足:对于任意,有.(1)求数列的通项公式;(2)求数列的通项公式,若在数列的两项之间都按照如下规则插入一些数后,构成新数列:和两项之间插入个数,使这个数构成等差数列,求;(3)若不等式成立的自然数恰有个,求正整数的值.20.设是两个相互垂直的单位向量,且(Ⅰ)若,求的值;(Ⅱ)若,求的值.21.已知向量.(1)若,求的值;(2)记函数,求的最大值及单调递增区间.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
先利用判别式法求出|x|,|y|,|z|的取值范围,再判断得解.【题目详解】因为,所以,整理得:,解得,所以,同理,.故选B【题目点拨】本题主要考查新定义和判别式法求范围,意在考查学生对这些知识的理解掌握水平和分析推理能力.2、D【解题分析】
由弧长公式求出圆半径,再在直角三角形中求解.【题目详解】,如图,设是中点,则,,,∴.故选D.【题目点拨】本题考查扇形弧长公式,在求弦长时,常在直角三角形中求解.3、D【解题分析】
由正弦定理及余弦定理可得,,然后求解即可.【题目详解】解:由可得,则,①又,所以,即,所以②由①②可得:,由余弦定理可得,故选:D.【题目点拨】本题考查了正弦定理及余弦定理的综合应用,重点考查了两角和的正弦公式,属中档题.4、C【解题分析】试题分析:最大,考点:数列单调性点评:求解本题的关键是由已知得到数列是递减数列,进而转化为寻找最小的正数项5、D【解题分析】
先画出满足条件的平面区域,将变形为:,平移直线得直线过点时,取得最小值,求出即可.【题目详解】解:画出满足条件的平面区域,如图示:
由得:,
平移直线,显然直线过点时,最小,
由,解得:
∴最小值,
故选:D.【题目点拨】本题考查了简单的线性规划问题,考查数形结合思想,是一道基础题.6、D【解题分析】
求出正四棱锥的高后可求其体积.【题目详解】正四棱锥底面的对角线的长度为,故正四棱锥的高为,所以体积为,故选D.【题目点拨】正棱锥中,棱锥的高、斜高、侧棱和底面外接圆的半径可构成四个直角三角形,它们沟通了棱锥各个几何量之间的关系,解题中注意利用它们实现不同几何量之间的联系.7、C【解题分析】
由正弦定理分别检验问题的充分性和必要性,可得答案.【题目详解】解:充分性:在△中,由,可得,所以,故充分性成立;必要性:在△中,由及正弦定理,可得,可得,,故,必要性成立;故可得:在△中,角,,所对的边分别为,,,则“”是“”的充分必要条件,故选C.【题目点拨】本题主要考查充分条件、必要条件的判断,相对不难,注意正弦定理的灵活运用.8、C【解题分析】
先利用可求出的值,再利用、两点横坐标之差的绝对值为周期的一半,计算出周期,再由可计算出的值,从而可得出答案.【题目详解】由题意可知,,、两点横坐标之差的绝对值为周期的一半,则,,因此,,,故选C.【题目点拨】本题考查三角函数的解析式的求解,求解步骤如下:(1)求、:,;(2)求:根据题中信息求出最小正周期,利用公式求出的值;(3)求:将对称中心点和最高、最低点的坐标代入函数解析式,若选择对称中心点,还要注意函数在该点附近的单调性.9、B【解题分析】
由题意利用两个向量数量积的定义,求得的值,再根据,计算求得结果.【题目详解】由题意若,,且与夹角为,可得,.故选:B.【题目点拨】本题考查向量数量积的定义、向量的模的方法,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意不要错选成A答案.10、B【解题分析】
由两圆有3条公切线,可知两圆外切,则圆心距等于两圆半径之和,求解即可.【题目详解】由题意,圆与圆外切,所以,即,解得或.【题目点拨】本题考查了两圆外切的性质,考查了计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】
在中,延长交于,由重心的性质,找到、和的关系,在和中利用余弦定理分别表示出和,求出,再利用余弦定理表示出,利用基本不等式和的范围求解即可.【题目详解】画出,连接,并延长交于,因为是的重心,所以为中点,因为,所以,由重心的性质,,在中,由余弦定理得,,在中,由余弦定理得,因为,所以,又,所以,在中,由余弦定理和基本不等式,,又,所以,故.故答案为:【题目点拨】本题主要考查三角形重心的性质、余弦定理解三角形和基本不等式求最值,考查学生的分析转化能力,属于中档题.12、【解题分析】试题分析:的夹角,,,,.考点:向量的运算.【思路点晴】平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数.13、16【解题分析】
根据已知条件可计算出扇形的半径,然后根据面积公式即可计算出扇形的面积.【题目详解】设扇形的半径为,圆心角弧度数为,所以即,所以,所以.故答案为:.【题目点拨】本题考查角度与弧度的转化以及扇形的弧长和面积公式,难度较易.扇形的弧长公式:,扇形的面积公式:.14、【解题分析】
异面直线所成角,一般平移到同一个平面求解.【题目详解】连接DF,异面直线与所成角等于【题目点拨】异面直线所成角,一般平移到同一个平面求解.不能平移时通常考虑建系,利用向量解决问题.15、【解题分析】
分别求出,,,结果构成等比数列,进而推断数列是首相为2,公比为2的等比数列,进而求得数列的通项公式,再由求得答案.【题目详解】,,,依此类推可得,,,即.,解得.故答案为:7.【题目点拨】本题考查利用数列的递推关系求数列的通项公式,求解的关键在于推断是等比数列,再用累加法求得数列的通项公式,考查逻辑推理能力和运算求解能力.16、2【解题分析】
根据条件,利用余弦定理可建立关于c的方程,即可解出c.【题目详解】由余弦定理得,即,解得或(舍去).故填2.【题目点拨】本题主要考查了利用余弦定理求三角形的边,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)求得有零点的条件,运用古典概率的公式,计算可得所求;(2)若,即,画出不等式组表示的区域,计算面积可得所求.【题目详解】解:(1)函数有零点的条件为,即,,可得事件的总数为,而有零点的个数为,,,,,,共7个,则函数有零点的概率为;(2)若,即,画出的区域,可得成立的概率为.【题目点拨】本题考查古典概率和几何概率的求法,考查运算能力,属于基础题.18、(1)证明见解析;(2)证明见解析.【解题分析】
(1)连结交于,连结,先证明,再证明平;(2)取的中点为,连结,,,先证明平面,再证明平面平面.【题目详解】证明:(1)连结交于,连结,由于棱柱的侧面是平行四边形,故为的中点,又为的中点,故是的中位线,所以,又平面,平面,所以平面.(2)取的中点为,连结,,,在中,,由,知为正三角形,故,又,,故,所以,又,所以平面,又平面,所以平面平面.【题目点拨】本题主要考查空间位置关系的证明,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于基础题.19、(1);,;(3).【解题分析】
(1)令求出,然后令,由得出,两式相减可得出数列是等比数列,确定该数列的首项和公比,即可求出数列的通项公式;(2)令可计算出,再令,由可得出,两式相减求出,求出,再检验是否满足的表达式,由此可得出数列的通项公式,求出,由,以及可得出的值;(3)化简可得,分类讨论,当、时,不等式成立,当时,,利用判断数列的单调性,得出该数列的最大项,可知满足不等式,且和不满足该不等式,由此可得出实数的取值范围,进而求出正整数的值.【题目详解】(1)对任意的,.当时,,解得;当时,由得出,两式相减得,化简得,即,所以,数列是以为首项,以为公比的等比数列,因此,;(2)对于任意,有.当时,,;当时,由,可得,上述两式相减得,.适合上式,因此,.由于和两项之间插入个数,使得这个数成等差数列,这个数列的公差为.,且,所以,;(3)由,得.当、,该不等式显然成立;当时,,由,得,设,,当时,,即当时,,即,则.所以,数列的最大项为,又,.由题意可中,满足不等式,和不满足不等式.,则,因此正整数的值为.【题目点拨】本题考查利用求数列的通项公式、等差数列定义的应用,同时也考查了数列不等式的求解,涉及数列单调性的应用,考查推理能力与运算求解能力,属于中等题.20、(Ⅰ)(Ⅱ)【解题分析】
(Ⅰ),则存在唯一的使,解得所求参数的值;(Ⅱ)若,则,解得所求参数的值.【题目详解】解:(Ⅰ)若,则存在唯一的,使,,当时,;(Ⅱ)若,则,因为是两个相互垂直的单
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 租用意向协议书
- 经营撤股协议书
- 台球厅承包合同协议书
- 租凭工厂协议书
- 美发合资协议书
- 聘请砍树协议书
- 经营转让协议书
- 向厂方解除合同协议书
- 自愿出资协议书
- 拱墅区土方运输协议书
- 无机化学说课
- 2022-2023学年天津市河西区部编版三年级下册期末考试语文试卷
- 吊装施工记录
- 国开《Windows网络操作系统管理》形考任务4-配置故障转移群集服务实训
- 风力发电居间合作协议书范本
- 基于单片机的五岔路口交通灯方案设计
- 2023污水处理用复合碳源技术规范
- 4-6岁一盘粽子-超轻粘土课件
- 解读《2023年中国血脂管理指南》
- 承插型盘扣式钢管脚手架典型产品构配件种类及规格
- 马铃薯(土豆)深加工项目可行性研究报告
评论
0/150
提交评论