广东省仲元中学等七校联合体2024届数学高一第二学期期末学业质量监测试题含解析_第1页
广东省仲元中学等七校联合体2024届数学高一第二学期期末学业质量监测试题含解析_第2页
广东省仲元中学等七校联合体2024届数学高一第二学期期末学业质量监测试题含解析_第3页
广东省仲元中学等七校联合体2024届数学高一第二学期期末学业质量监测试题含解析_第4页
广东省仲元中学等七校联合体2024届数学高一第二学期期末学业质量监测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省仲元中学等七校联合体2024届数学高一第二学期期末学业质量监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,当时,取得最小值,则等于()A.9 B.7 C.5 D.32.已知是不同的直线,是不同的平面,则下列说法正确的是()A.若,则 B.若,则C.若,则 D.若,则3.设的内角所对边分别为.则该三角形()A.无解 B.有一解 C.有两解 D.不能确定4.已知等差数列的公差为2,且是与的等比中项,则等于()A. B. C. D.5.要完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户调查社会购买力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况,宜采用的抽样方法依次为()A.①随机抽样法,②系统抽样法B.①分层抽样法,②随机抽样法C.①系统抽样法,②分层抽样法D.①②都用分层抽样法6.将正整数排列如下:123456789101112131415……则图中数出现在()A.第行列 B.第行列 C.第行列 D.第行列7.下列函数中,既是偶函数又在区间上单调递减的函数是()A. B. C. D.8.办公室装修一新,放些植物花草可以清除异味,公司提供绿萝、文竹、碧玉、芦荟4种植物供员工选择,每个员工任意选择2种,则员工甲和乙选择的植物全不同的概率为:A. B. C. D.9.集合,,则()A. B.C. D.10.无穷数列1,3,6,10,…的通项公式为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的反函数为____________.12.已知数列的前n项和为,,且(),记(),若对恒成立,则的最小值为__.13.直线与的交点坐标为________.14.已知数列满足,(),则________.15.设是定义在上以2为周期的偶函数,已知,,则函数在上的解析式是16.______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知是等差数列,满足,,且数列的前n项和.(1)求数列和的通项公式;(2)令,数列的前n项和为,求证:.18.已知,,且与的夹角为.(1)求在上的投影;(2)求.19.设角,,其中:(1)若,求角的值;(2)求的值.20.如图,在四棱锥中,底面为正方形,平面,,与交于点,,分别为,的中点.(Ⅰ)求证:平面平面;(Ⅱ)求证:∥平面;(Ⅲ)求证:平面.21.已知关于直线对称,且圆心在轴上.(1)求的标准方程;(2)已知动点在直线上,过点引的两条切线、,切点分别为.①记四边形的面积为,求的最小值;②证明直线恒过定点.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

先对函数进行配凑,使得能够使用均值不等式,再利用均值不等式,求得结果.【题目详解】因为故当且仅当,即时,取得最小值.故,则.故选:B.【题目点拨】本题考查均值不等式的使用,属基础题;需要注意均值不等式使用的条件.2、D【解题分析】

由线面平行的判定定理即可判断A;由线面垂直的判定定理可判断B;由面面垂直的性质可判断C;由空间中垂直于同一条直线的两平面平行可判断D.【题目详解】对于A选项,加上条件“”结论才成立;对于B选项,加上条件“直线和相交”结论才成立;对于C选项,加上条件“”结论才成立.故选:D【题目点拨】本题考查空间直线与平面的位置关系,涉及线面平行的判定、线面垂直的判定、面面垂直的性质,属于基础题.3、C【解题分析】

利用正弦定理以及大边对大角定理求出角,从而判断出该三角形解的个数.【题目详解】由正弦定理得,所以,,,,或,因此,该三角形有两解,故选C.【题目点拨】本题考查三角形解的个数的判断,解题时可以充分利用解的个数的等价条件来进行判断,具体来讲,在中,给定、、,该三角形解的个数判断如下:(1)为直角或钝角,,一解;,无解;(2)为锐角,或,一解;,两解;,无解.4、A【解题分析】

直接利用等差数列公式和等比中项公式得到答案.【题目详解】是与的等比中项,故即解得:故选:A【题目点拨】本题考查了等差数列和等比中项,属于常考题型.5、B【解题分析】①由于社会购买力与收入有关系,所以应采用分层抽样法;②由于人数少,可以采用简单随机抽样法要完成下列二项调查:①从某社区125户高收入家庭,280户中等收入家庭,95户低收入家庭中,选出100户调查社会解:∵社会购买力的某项指标,受到家庭收入的影响而社区中各个家庭收入差别明显①用分层抽样法,而从某中学的15名艺术特长生,要从中选出3人调查学习负担情况的调查中个体之间差别不大,且总体和样本容量较小,∴②用随机抽样法故选B6、B【解题分析】

计算每行首个数字的通项公式,再判断出现在第几列,得到答案.【题目详解】每行的首个数字为:1,2,4,7,11…利用累加法:计算知:数出现在第行列故答案选B【题目点拨】本题考查了数列的应用,计算首数字的通项公式是解题的关键.7、C【解题分析】

依次分析选项的奇偶性和在区间上的单调性即可得到答案.【题目详解】因为是奇函数,故A选项错误,因为是非奇非偶函数,故D选项错误,因为是偶函数,由函数图像知,在区间上单调递增,故B选项错误,因为是偶函数,由函数图像知,在区间上单调递减,故C选项正确.故选:C.【题目点拨】本题主要考查了函数的奇偶性的判断,二次函数单调性的判断,属于基础题.8、A【解题分析】

从公司提供的4中植物中任意选择2种,求得员工甲和乙共有种选法,再由任选2种有种,得到员工甲和乙选择的植物全不同有种选法,利用古典概型的概率计算公式,即可求解.【题目详解】由题意,从公司提供绿萝、文竹、碧玉、芦荟4种植物每个员工任意选择2种,则员工甲和乙共有种不同的选法,又从公司提供绿萝、文竹、碧玉、芦荟4种植物中,任选2种,共有种选法,则员工甲和乙选择的植物全不同,共有种不同的选法,所以员工甲和乙选择的植物全不同的概率为,故选A.【题目点拨】本题主要考查了古典概型及其概率的计算,以及排列、组合的应用,其中解答中认真审题,合理利用排列、组合求得基本事件的个数,利用古典概型的概率计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.9、B【解题分析】

求出中不等式的解集确定出,找出与的交集即可.【题目详解】解:由中不等式变形得:,解得:,即,,,故选:.【题目点拨】本题考查了交集及其运算,熟练掌握交集的定义是解本题的关键,属于基础题.10、C【解题分析】试题分析:由累加法得:,分别相加得,,故选C.考点:数列的通项公式.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

由原函数的解析式解出自变量x的解析式,再把x和y交换位置,即可得到结果.【题目详解】解:记∴故反函数为:【题目点拨】本题考查函数与反函数的定义,求反函数的方法和步骤,注意反函数的定义域是原函数的值域.12、【解题分析】

,即为首项为,公差为的等差数列,,,,由得,因为或时,有最大值,,即的最小值为,故答案为.【方法点晴】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,掌握一些常见的裂项技巧:①;②;③;④;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.13、【解题分析】

直接联立方程得到答案.【题目详解】联立方程解得即两直线的交点坐标为.故答案为【题目点拨】本题考查了两直线的交点,属于简单题.14、31【解题分析】

根据数列的首项及递推公式依次求出、、……即可.【题目详解】解:,故答案为:【题目点拨】本题考查利用递推公式求出数列的项,属于基础题.15、【解题分析】试题分析:根据题意,由于是定义在上以2为周期的偶函数,那么当,,可知当x,,那么利用周期性可知,在上的解析式就是将x,的图像向右平移2个单位得到的,因此可知,答案为.考点:函数奇偶性、周期性的运用点评:解决此类问题的关键是熟练掌握函数的有关性质,即周期性,奇偶性,单调性等有关性质.16、【解题分析】

先令,得到,两式作差,根据等比数列的求和公式,化简整理,即可得出结果.【题目详解】令,则,两式作差得:所以故答案为:【题目点拨】本题主要考查数列的求和,熟记错位相加法求数列的和即可,属于常考题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),(2)证明见解析【解题分析】

(1)计算,得到,再计算的通项公式得到答案.(2),利用裂项求和得到得到证明.【题目详解】(1),,.,.是等差数列,所以,所以.当时,,又,所以,当时,,符合,所以的通项公式是.(2).所以,即.【题目点拨】本题考查了数列的通项公式,裂项求和,意在考查学生对于数列公式方法的灵活运用.18、(1)-2.(2).【解题分析】分析:(1)根据题中所给的条件,利用向量的数量积的定义式,求得,之后应用投影公式,在上的投影为,求得结果;(2)应用向量模的平方等于向量的平方,之后应用公式求得结果.详解:(1)在上的投影为(2)因为,,且与的夹角为所以所以点睛:该题考查的是有关向量的投影以及向量模的计算问题,在解题的过程中,涉及到的知识点有向量的数量积的定义式,投影公式,向量模的平方和向量的平方是相等的,灵活运用公式求得结果.19、(1);(2).【解题分析】

(1)由,可得出,进而得出,结合可求出角的值,可求出的值,再利用反余弦的定义即可求出角的值;(2)由题意可得出,,可计算出,根据反三角的定义得出,,利用两角和的正弦公式求出的值,即可得出角的值.【题目详解】(1),,,,则,可得,所以,可得.因此,;(2),则,所以,,由(1)知,所以,,,,,,由同角三角函数的基本关系可得,,由两角和的正弦公式可得,因此,.【题目点拨】本题考查反三角函数的定义,同时也考查了利用两角和的正弦公式的应用,在求角时,不要忽略了求角的取值范围,考查计算能力,属于中等题.20、(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)见解析【解题分析】

(I)通过证明平面来证得平面平面.(II)取中点,连接,通过证明四边形为平行四边形,证得,由此证得∥平面.(III)通过证明平面证得,通过计算证明证得,由此证得平面.【题目详解】证明:(Ⅰ)因为平面,所以.因为,,所以平面.因为平面,所以平面平面.(Ⅱ)取中点,连结,因为为的中点所以,且.因为为的中点,底面为正方形,所以,且.所以,且.所以四边形为平行四边形.所以.因为平面且平面,所以平面.(Ⅲ)在正方形中,,因为平面,所以.因为,所以平面.所以.在△中,设交于.因为,且分别为的中点,所以.所以.设,由已知,所以.所以.所以.所以,且为公共角,所以△∽△.所以.所以.因为,所以平面.【题目点拨】本小题主要考查线面垂直、面面垂直的证明,考查线面平行的证明,考查空间想象能力和逻辑推理能力,属于中档题.21、(1)(2)①②证明见解析【解题分析】

(1)根据圆的一般式,可得圆心坐标,将圆心坐标代入直线方程,结合圆心在轴上,即可求得圆C的标准方程.(2)①根据切线性质及切线长定理,表示出的长,根据圆的性质可知当最小时,即可求得面积的最小值;②设出M点坐标,根据两条切线可知M、A、C、B四点共圆,可得圆心坐标及半径,进而求得的方程,根据两个圆公共弦所在直线方程求法即可得直线方程,进而求得过的定点坐标.【题目详

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论