江津中学2024届数学高一第二学期期末统考模拟试题含解析_第1页
江津中学2024届数学高一第二学期期末统考模拟试题含解析_第2页
江津中学2024届数学高一第二学期期末统考模拟试题含解析_第3页
江津中学2024届数学高一第二学期期末统考模拟试题含解析_第4页
江津中学2024届数学高一第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江津中学2024届数学高一第二学期期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在平面直角坐标系中,过点的直线与轴的正半轴,轴的正半轴分别交于两点,则的面积的最小值为()A.1 B.2 C.3 D.42.在△ABC中,内角A,B,C的对边分别是a,b,c,若,则△ABC是A.正三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形3.已知圆和圆只有一条公切线,若,且,则的最小值为()A.2 B.4 C.8 D.94.在中,若,则是()A.等腰三角形 B.等边三角形C.直角三角形 D.等腰直角三角形5.一条直线经过点,并且它的倾斜角等于直线倾斜角的2倍,则这条直线的方程是()A. B.C. D.6.已知,,,则它们的大小关系是()A. B. C. D.7.下图是实现秦九韶算法的一个程序框图,若输入的,,依次输入的为2,2,5,则输出的()A.10 B.12 C.60 D.658.设向量,,则是的A.充分不必要条件 B.充分必要条件C.必要不充分条件 D.既不充分也不必要条件9.函数的部分图象如图所示,则的单调递减区间为A.B.C.D.10.已知等比数列的首项,公比,则()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知数列是等比数列,若,,则公比________.12.已知,则________.13.若a、b、c正数依次成等差数列,则的最小值为_______.14.如图,在中,已知点在边上,,,则的长为____________.15.不等式x(2x﹣1)<0的解集是_____.16.已知向量,且,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知数列满足关系式,.(1)用表示,,;(2)根据上面的结果猜想用和表示的表达式,并用数学归纳法证之.18.已知,函数,,(1)证明:是奇函数;(2)如果方程只有一个实数解,求a的值.19.已知(1)求的值;(2)求的值.20.设函数,其中,.(1)求的周期及单调递减区间;(2)若关于的不等式在上有解,求实数的取值范围.21.已知,且,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】

利用直线的方程过点分别与轴的正半轴,轴的正半轴分别交于两点,可得:,,结合基本不等式的性质即可得出.【题目详解】在平面直角坐标系中,过点的直线与轴的正半轴,轴的正半轴分别交于两点,且构成,所以,直线斜率一定存在,设,,:,,则有:,,解得,当且仅当:,即时,等号成立,的面积为:.故选:B【题目点拨】本题考查了直线的截距式方程、基本不等式求最值,注意验证等号成立的条件,属于基础题.2、A【解题分析】

由正弦定理,记,则,,,又,所以,即,所以.故选:A.3、D【解题分析】

由题意可得两圆相内切,根据两圆的标准方程求出圆心和半径,可得,再利用“1”的代换,使用基本不等式求得的最小值.【题目详解】解:由题意可得两圆相内切,两圆的标准方程分别为,,圆心分别为,,半径分别为2和1,故有,,,当且仅当时,等号成立,的最小值为1.故选:.【题目点拨】本题考查两圆的位置关系,两圆相内切的性质,圆的标准方程的特征,基本不等式的应用,得到是解题的关键和难点.4、A【解题分析】

首先根据降幂公式把等式右边降幂你,再根据把换成与的关系,进一步化简即可.【题目详解】,,,选A.【题目点拨】本题主要考查了二倍角,两角和与差的余弦等,需熟记两角和与差的正弦余弦等相关公式,以及特殊三角函数的值是解决本题的关键,属于基础题.5、B【解题分析】

先求出直线的倾斜角,进而得出所求直线的倾斜角和斜率,再根据点斜式写直线的方程.【题目详解】已知直线的斜率为,则倾斜角为,故所求直线的倾斜角为,斜率为,由直线的点斜式得,即。故选B.【题目点拨】本题考查直线的性质与方程,属于基础题.6、C【解题分析】因为,,故选C.7、D【解题分析】,,判断否,,,判断否,,,判断是,输出.故选.8、C【解题分析】

利用向量共线的性质求得,由充分条件与必要条件的定义可得结论.【题目详解】因为向量,,所以,即可以得到,不能推出,是“”的必要不充分条件,故选C.【题目点拨】本题主要考查向量共线的性质、充分条件与必要条件的定义,属于中档题.利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用解答;(2)两向量垂直,利用解答.9、D【解题分析】

根据图象可得最小正周期,求得;利用零点和的符号可确定的取值;令,解不等式即可求得单调递减区间.【题目详解】由图象可知:又,,由图象可知的一个可能的取值为令,,解得:,即的单调递减区间为:,本题正确选项:【题目点拨】本题考查利用图象求解余弦型函数的解析式、余弦型函数单调区间的求解问题;关键是能够灵活应用整体对应的方式来求解解析式和单调区间,属于常考题型.10、B【解题分析】

由等比数列的通项公式可得出.【题目详解】解:由已知得,故选:B.【题目点拨】本题考查等比数列的通项公式的应用,是基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

利用等比数列的通项公式即可得出.【题目详解】∵数列是等比数列,若,,则,解得,即.故答案为:【题目点拨】本题考查了等比数列的通项公式,考查了计算能力,属于基础题.12、【解题分析】

由可得,然后用正弦的和差公式展开,然后将条件代入即可求出原式的值【题目详解】因为所以故答案为:【题目点拨】本题考查的三角恒等变换,解决此类问题时要善于发现角之间的关系.13、1【解题分析】

由正数a、b、c依次成等差数列,则,则,再结合基本不等式求最值即可.【题目详解】解:由正数a、b、c依次成等差数列,则,则,当且仅当,即时取等号,故答案为:1.【题目点拨】本题考查了等差中项的运算,重点考查了基本不等式的应用,属基础题.14、【解题分析】

由诱导公式可知,在中用余弦定理可得BD的长。【题目详解】由题得,,在中,可得,又,代入得,解得.故答案为:【题目点拨】本题考查余弦定理和诱导公式,是基础题。15、【解题分析】

求出不等式对应方程的实数根,即可写出不等式的解集,得到答案.【题目详解】由不等式对应方程的实数根为0和,所以该不等式的解集是.故答案为:.【题目点拨】本题主要考查了一元二次不等式的解法,其中解答中熟记一元二次不等式的解法是解答的关键,着重考查了推理与运算能力,属于基础题.16、【解题分析】

把平方,将代入,化简即可得结果.【题目详解】因为,所以,,故答案为.【题目点拨】本题主要考查向量的模及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,(2)猜想:,证明见解析【解题分析】

(1)根据递推关系依次代入求解,(2)根据规律猜想,再利用数学归纳法证明【题目详解】解:(1),∴,,;(2)猜想:.证明:当时,结论显然成立;假设时结论成立,即,则时,,即时结论成立.综上,对时结论成立.【题目点拨】本题考查归纳猜想与数学归纳法证明,考查基本分析论证能力,属基础题18、(1)证明见解析(1)1【解题分析】

(1)运用函数的奇偶性的定义即可得证(1)由题意可得有且只有两个相等的实根,可得判别式为0,解方程可得所求值.【题目详解】(1)证明:由函数,,可得定义域为,且,可得为奇函数;(1)方程只有一个实数解,即为,即△,解得舍去),则的值为1.【题目点拨】本题考查函数的奇偶性的判断和二次方程有解的条件,考查方程思想和定义法,属于基础题.19、(1)20,(2)【解题分析】

(1)先利用同角三角函数的基本关系求得cos和tan的值,进而利用二倍角公式把sin2展开,把sin和cos的值代入即可.(2)先利用诱导公式使=tan(﹣),再利用正切的两角和公式展开后,把tanα的值代入即可求得答案.【题目详解】(1)由,得,所以=(2)∵,∴【题目点拨】本题主要考查了三角函数的化简求值的问题.要求学生能灵活运用三角函数的基本公式.20、(1),;(2)【解题分析】

(1)利用坐标形式下向量的数量积运算以及二倍角公式、辅助角公式将化简为的形式,根据周期计算公式以及单调性求解公式即可得到结果;(2)分析在的值域,根据能成立的思想得到与满足的不等关系,求解出的范围即可.【题目详解】(1)∵,∴,∴的周期为,令,则,的单调递减区间为(2)∵,∴,在上递增,在上递减,且,∴,∴,即,若在上有解,则故:,解得.【题目点拨】本题考查向量与三角函函数的综合应用,其中着重考查了使用三角恒等变换进行化简以及利用正弦函数的性质分析值域从而求解参数范围,对于转化与计算的能力要求较

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论