2024届浙江绍兴一中高一数学第二学期期末考试试题含解析_第1页
2024届浙江绍兴一中高一数学第二学期期末考试试题含解析_第2页
2024届浙江绍兴一中高一数学第二学期期末考试试题含解析_第3页
2024届浙江绍兴一中高一数学第二学期期末考试试题含解析_第4页
2024届浙江绍兴一中高一数学第二学期期末考试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江绍兴一中高一数学第二学期期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如图所示,在正方体中,侧面对角线,上分别有一点E,F,且,则直线EF与平面ABCD所成的角的大小为()A.0° B.60° C.45° D.30°2.已知椭圆C:的左右焦点为F1,F2离心率为,过F2的直线l交C与A,B两点,若△AF1B的周长为,则C的方程为()A. B. C. D.3.在中,,,,则为()A. B. C. D.4.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组,如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6 B.8 C.12 D.185.同时抛掷三枚硬币,则抛掷一次时出现两枚正面一枚反面的概率为()A. B. C. D.6.在中,分别是角的对边,若,且,则的值为()A.2 B. C. D.47.已知A(-3,8),B(2,2),在x轴上有一点M,使得|MA|+|MB|最短,则点M的坐标是()A.(-1,0) B.(1,0) C. D.8.已知m、n、a、b为空间四条不同直线,α、β、为不同的平面,则下列命题正确的是().A.若,,则B.若,,则C.若,,,则D.若,,,则9.已知与的夹角为,,,则()A. B. C. D.10.已知函数,其中为整数,若在上有两个不相等的零点,则的最大值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知直线:与直线:互相平行,则直线与之间的距离为______.12.已知角满足,则_____13.数列满足下列条件:,且对于任意正整数,恒有,则______.14.在中,若,则____________.15.已知向量、的夹角为,且,,则__________.16.设为等差数列的前n项和,,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知为等差数列,且(Ⅰ)求数列的通项公式;(Ⅱ)记的前项和为,若成等比数列,求正整数的值.18.设,求函数的最小值为__________.19.在中,内角A,B,C所对的边分别为a,b,c.已知.(1)求角B的大小;(2)设a=2,c=3,求b和的值.20.设,,.(1)若,求实数的值;(2)若,求实数的值.21.如图,在直四棱柱中,底面为等腰梯形,,,,,、、分别是、、的中点.(1)证明:直线平面;(2)求直线与面所成角的大小;(3)求二面角的平面角的余弦值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】

证明一条直线与一个平面平行,除了可以根据直线与平面平行的判定定理以外,通常还可以通过平面与平面平行进行转化,比如过E作EG∥AB交BB1于点G,连接GF,根据三角形相似比可知:平面EFG∥平面ABCD.而EF在平面EFG中,故可以证得:EF∥平面ABCD.【题目详解】解:过E作EG∥AB交BB1于点G,连接GF,则,∵B1E=C1F,B1A=C1B,∴.∴FG∥B1C1∥BC.又∵EG∩FG=G,AB∩BC=B,∴平面EFG∥平面ABCD.而EF在平面EFG中,∴EF∥平面ABCD.故答案为A【题目点拨】本题主要考查空间直线和平面平行的判定,根据面面平行的性质是解决本题的关键.2、A【解题分析】

若△AF1B的周长为4,由椭圆的定义可知,,,,,所以方程为,故选A.考点:椭圆方程及性质3、D【解题分析】

利用正弦定理得到答案.【题目详解】根据正弦定理:即:答案选D【题目点拨】本题考查了正弦定理,意在考查学生的计算能力.4、C【解题分析】试题分析:由直方图可得分布在区间第一组与第二组共有21人,分布在区间第一组与第二组的频率分别为1.24,1.16,所以第一组有12人,第二组8人,第三组的频率为1.36,所以第三组的人数:18人,第三组中没有疗效的有6人,第三组中有疗效的有12人.考点:频率分布直方图5、B【解题分析】

根据二项分布的概率公式求解.【题目详解】每枚硬币正面向上的概率都等于,故恰好有两枚正面向上的概率为:.故选B.【题目点拨】本题考查二项分布.本题也可根据古典概型概率计算公式求解.6、A【解题分析】

由正弦定理,化简求得,解得,再由余弦定理,求得,即可求解,得到答案.【题目详解】在中,因为,且,由正弦定理得,因为,则,所以,即,解得,由余弦定理得,即,解得,故选A.【题目点拨】本题主要考查了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,熟练掌握定理、合理运用是解本题的关键.通常当涉及两边及其中一边的对角或两角及其中一角对边时,运用正弦定理求解;当涉及三边或两边及其夹角时,运用余弦定理求解.7、B【解题分析】

由集合性质可知,求出点A关于x轴的对称点,此对称点与点B确定的直线与x轴的交点,即为点M.【题目详解】点A关于x轴的对称点C的坐标为:,由两点可得直线BC方程为:,可求得与y轴的交点为.故选B.【题目点拨】本题考查最短路径问题,辅助作图更易理解,注意求直线方程时要熟练使用最简便的方式,注意计算的准确性.8、D【解题分析】

根据空间中直线与平面、平面与平面位置关系及其性质,即可判断各选项.【题目详解】对于A,,,只有当与平面α、β的交线垂直时,成立,当与平面α、β的交线不垂直时,不成立,所以A错误;对于B,,,则或,所以B错误;对于C,,,,由面面平行性质可知,或a、b为异面直线,所以C错误;对于D,若,,,由线面垂直与线面平行性质可知,成立,所以D正确.故选:D.【题目点拨】本题考查了空间中直线与平面、平面与平面位置关系的性质与判定,对空间想象能力要求较高,属于基础题.9、A【解题分析】

将等式两边平方,利用平面向量数量积的运算律和定义得出关于的二次方程,解出即可.【题目详解】将等式两边平方得,,即,整理得,,解得,故选:A.【题目点拨】本题考查平面向量模的计算,在计算向量模的时候,一般将向量模的等式两边平方,利用平面向量数量积的定义和运算律进行计算,考查运算求解能力,属于中等题.10、A【解题分析】

利用一元二次方程根的分布的充要条件得到关于的不等式,再由为整数,可得当取最小时,取最大,从而求得答案.【题目详解】∵在上有两个不相等的零点,∴∵,∴当取最小时,取最大,∵两个零点的乘积小于1,∴,∵为整数,令时,,满足.故选:A.【题目点拨】本题考查一元二次函数的零点,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意为整数的应用.二、填空题:本大题共6小题,每小题5分,共30分。11、10【解题分析】

利用两直线平行,先求出,再由两平行线的距离公式求解即可【题目详解】由题意,,所以,,所以直线:,化简得,由两平行线的距离公式:.故答案为:10【题目点拨】本题主要考查两直线平行的充要条件,两直线和平行的充要条件是,考查两平行线间的距离公式,属于基础题.12、【解题分析】

利用诱导公式以及两角和与差的三角公式,化简求解即可.【题目详解】解:角满足,可得

则.

故答案为:.【题目点拨】本题考查两角和与差的三角公式,诱导公式的应用,考查计算能力,是基础题.13、512【解题分析】

直接由,可得,这样推下去,再带入等比数列的求和公式即可求得结论。【题目详解】故选C。【题目点拨】利用递推式的特点,反复带入递推式进行计算,发现规律,求出结果,本题是一道中等难度题目。14、2【解题分析】

根据正弦定理角化边可得答案.【题目详解】由正弦定理可得.故答案为:2【题目点拨】本题考查了正弦定理角化边,属于基础题.15、【解题分析】

根据向量的数量积的应用进行转化即可.【题目详解】,与的夹角为,∴•||||cos4,则,故答案为.【题目点拨】本题主要考查向量长度的计算,根据向量数量积的应用是解决本题的关键.16、54.【解题分析】

设首项为,公差为,利用等差数列的前n项和公式列出方程组,解方程求解即可.【题目详解】设首项为,公差为,由题意,可得解得所以.【题目点拨】本题主要考查了等差数列的前n项和公式,解方程的思想,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、:(Ⅰ)(Ⅱ)【解题分析】试题分析:(Ⅰ)设等差数列{an}的公差等于d,则由题意可得,解得a1=1,d=1,从而得到{an}的通项公式.(Ⅱ)由(Ⅰ)可得{an}的前n项和为Sn==n(n+1),再由=a1Sk+1,求得正整数k的值.解:(Ⅰ)设等差数列{an}的公差等于d,则由题意可得,解得a1=1,d=1.∴{an}的通项公式an=1+(n﹣1)1=1n.(Ⅱ)由(Ⅰ)可得{an}的前n项和为Sn==n(n+1).∵若a1,ak,Sk+1成等比数列,∴=a1Sk+1,∴4k1=1(k+1)(k+3),k="2"或k=﹣1(舍去),故k=2.考点:等比数列的性质;等差数列的通项公式.18、9【解题分析】试题分析:本题解题的关键在于关注分母,充分运用发散性思维,经过同解变形构造基本不等式,从而求出最小值.试题解析:由得,则当且仅当时,上式取“=”,所以.考点:基本不等式;构造思想和发散性思维.19、(Ⅰ);(Ⅱ),.【解题分析】分析:(Ⅰ)由题意结合正弦定理边化角结合同角三角函数基本关系可得,则B=.(Ⅱ)在△ABC中,由余弦定理可得b=.结合二倍角公式和两角差的正弦公式可得详解:(Ⅰ)在△ABC中,由正弦定理,可得,又由,得,即,可得.又因为,可得B=.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,B=,有,故b=.由,可得.因为a<c,故.因此,所以,点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.20、(1);(2)【解题分析】

(1)由向量加法的坐标运算可得:,再由向量平行的坐标运算即可得解.(2)由向量垂直的坐标运算即可得解.【题目详解】解:(1),,,,,故,所以.(2),,,所以.【题目点拨】本题考查了向量加法的坐标运算、向量平行和垂直的坐标运算,属基础题.21、(1)证明见解析(2)(3)【解题分析】

(1)取的中点,证明为平行四边形,且,再由三角形中位线证明,最后由线面平行的判定定理证明即可;(2)作交于点,由线面垂直关系得到直线与面所成角为,再根据是正三角形求解即可;(3)由(2)知,平面,再证明和分别垂直于,求出直线与面所成角为,再求出和的长度即可求解.【题目详解】(1)在直四棱柱中,取的中点,连接,,,因为,,且,所以为平行四边形,所以,又因

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论