




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省皖北协作区2024届数学高一下期末学业质量监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知等比数列中,各项都是正数,且成等差数列,则等于()A. B. C. D.2.已知函数和的定义域都是,则它们的图像围成的区域面积是()A. B. C. D.3.某班20名学生的期末考试成绩用如图茎叶图表示,执行如图程序框图,若输入的()分别为这20名学生的考试成绩,则输出的结果为()A.11 B.10 C.9 D.84.已知不等式的解集为,则不等式的解集为()A. B.C. D.5.在中,角,,所对的边分别为,,,若,,,则()A. B. C. D.6.己知函数的最小值为,最大值为,若,则数列是()A.公差不为0的等差数列 B.公比不为1的等比数列C.常数数列 D.以上都不对7.在等差数列中,若,则()A.45 B.75 C.180 D.3208.若实数满足约束条件,则的最大值是()A. B.0 C.1 D.29.若,且,则“”是“函数有零点”的(
)A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.将一个总体分为甲、乙、丙三层,其个体数之比为,若用分层抽样的方法抽取容量为200的样本,则应从丙层中抽取的个体数为()A.20 B.40 C.60 D.100二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在四面体A-BCD中,已知棱AC的长为,其余各棱长都为1,则二面角A-CD-B的平面角的余弦值为________.12.若满足约束条件则的最大值为__________.13.在平面直角坐标系中,圆的方程为.若直线上存在一点,使过所作的圆的两条切线相互垂直,则实数的取值范围是______.14.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层灯数为_____________15.若,则_________.16.已知在中,角的大小依次成等差数列,最大边和最小边的长是方程的两实根,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.正四棱锥中,,分别为,的中点.(1)求证:平面;(2)若,求异面直线和所成角的余弦值.18.如图,在中,点在边上,为的平分线,.(1)求;(2)若,,求.19.已知.(I)若函数有三个零点,求实数的值;(II)若对任意,均有恒成立,求实数的取值范围.20.已知,,函数.(1)求在区间上的最大值和最小值;(2)若函数在区间上是单调递增函数,求正数的取值范围.21.某种汽车的购车费用是10万元,每年使用的保险费、养路费、汽油费约为万元,年维修费用第一年是万元,第二年是万元,第三年是万元,…,以后逐年递增万元汽车的购车费用、每年使用的保险费、养路费、汽油费、维修费用的和平均摊到每一年的费用叫做年平均费用.设这种汽车使用年的维修费用的和为,年平均费用为.(1)求出函数,的解析式;(2)这种汽车使用多少年时,它的年平均费用最小?最小值是多少?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】
由条件可得a3=a1+2a2,即a1q2=a1+2a1q,解得q=1.代入所求运算求得结果.【题目详解】∵等比数列{an}中,各项都是正数,且a1,a3,2a2成等差数列,故公比q不等于1.∴a3=a1+2a2,即a1q2=a1+2a1q,解得q=1.∴3+2,故选:C.【题目点拨】本题主要考查等差中项的性质,等比数列的通项公式,考查了整体化的运算技巧,属于基础题.2、C【解题分析】
由可得,所以的图像是以原点为圆心,为半径的圆的上半部分;再结合图形求解.【题目详解】由可得,作出两个函数的图像如下:则区域①的面积等于区域②的面积,所以他们的图像围成的区域面积为半圆的面积,即.故选C.【题目点拨】本题考查函数图形的性质,关键在于的识别.3、A【解题分析】
首先判断程序框图的功能,然后从茎叶图数出相应人数,从而得到答案.【题目详解】由算法流程图可知,其统计的是成绩大于等于120的人数,所以由茎叶图知:成绩大于等于120的人数为11,故选A.【题目点拨】本题主要考查算法框图的输出结果,意在考查学生的分析能力及计算能力,难度不大.4、B【解题分析】
首先根据题意得到,为方程的根,再解出的值带入不等式即可.【题目详解】有题知:,为方程的根.所以,解得.所以,解得:或.故选:B【题目点拨】本题主要考查二次不等式的求法,同时考查了学生的计算能力,属于简单题.5、C【解题分析】
在中,利用正弦定理求出即可.【题目详解】在中,角,,所对的边分别为,,,已知:,,,利用正弦定理:,解得:.故选C.【题目点拨】本题考查了正弦定理的应用及相关的运算问题,属于基础题.6、C【解题分析】
先根据判别式法求出的取值范围,进而求得和的关系,再展开算出分析即可.【题目详解】设,则,因为,故,故二次函数,整理得,故与为方程的两根,所以为常数.故选C.【题目点拨】本题主要考查判别式法求分式函数范围的问题,再根据二次函数的韦达定理进行求解分析即可.7、C【解题分析】试题分析:因为数列为等差数列,且,所以,,从而,所以,而,所以,故选C.考点:等差数列的性质.8、C【解题分析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,求出最优解的坐标代入目标函数即可得解.【题目详解】作出可行域如图,设,联立,则,,当直线经过点时,截距取得最小值,取得最大值.故选:C【题目点拨】本题考查简单的线性规划,考查了数形结合的解题思想方法,属于基础题.9、A【解题分析】
结合函数零点的定义,利用充分条件和必要条件的定义进行判断,即可得出答案.【题目详解】由题意,当时,,函数与有交点,故函数有零点;当有零点时,不一定取,只要满足都符合题意.所以“”是“函数有零点”的充分不必要条件.故答案为:A【题目点拨】本题主要考查了函数零点的概念,以及对数函数的图象与性质的应用,其中解答中熟记函数零点的定义,以及对数函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.10、B【解题分析】
求出丙层所占的比例,然后求出丙层中抽取的个体数【题目详解】因为甲、乙、丙三层,其个体数之比为,所以丙层所占的比例为,所以应从丙层中抽取的个体数为,故本题选B.【题目点拨】本题考查了分层抽样中某一层抽取的个体数的问题,考查了数学运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】如图,取中点,中点,连接,由题可知,边长均为1,则,中,,则,得,所以二面角的平面角即,在中,,则,所以.点睛:本题采用几何法去找二面角,再进行求解.利用二面角的定义:公共边上任取一点,在两个面内分别作公共边的垂线,两垂线的夹角就是二面角的平面角,找到二面角的平面角,再求出对应三角形的三边,利用余弦定理求解(本题中刚好为直角三角形).12、【解题分析】
作出可行域,根据目标函数的几何意义可知当时,.【题目详解】不等式组表示的可行域是以为顶点的三角形区域,如下图所示,目标函数的最大值必在顶点处取得,易知当时,.【题目点拨】线性规划问题是高考中常考考点,主要以选择及填空的形式出现,基本题型为给出约束条件求目标函数的最值,主要结合方式有:截距型、斜率型、距离型等.13、【解题分析】试题分析:记两个切点为,则由于,因此四边形是正方形,,圆标准方程为,,,于是圆心直线的距离不大于,,解得.考点:直线和圆的位置关系.14、1【解题分析】分析:设塔的顶层共有a1盏灯,则数列{an}公比为2的等比数列,利用等比数列前n项和公式能求出结果.详解:设塔的顶层共有a1盏灯,则数列{an}公比为2的等比数列,∴S7=a1(1-2点睛:本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力.15、【解题分析】
利用诱导公式求解即可【题目详解】,故答案为:【题目点拨】本题考查诱导公式,是基础题16、【解题分析】
本题首先可根据角的大小依次成等差数列计算出,然后根据最大边和最小边的长是方程的两实根得到以及,最后根据余弦定理即可得出结果.【题目详解】因为角成等差数列,所以,又因为,所以.设方程的两根分别为、,则,由余弦定理可知:,所以.【题目点拨】本题考查根据余弦定理求三角形边长,考查等差中项以及韦达定理的应用,余弦定理公式为,体现了综合性,是中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解题分析】
(1)取的中点,连接、,可得四边形为平行四边形,得到,由线面平行的判定可得平面;(2)连接交于,则为的中点,结合为的中点,得,可得(或其补角)为异面直线和所成角,在正四棱锥中,由为的中点,且,可得,设,求解三角形可得异面直线和所成角的余弦值.【题目详解】(1)取的中点,连接、,是的中点,且,在正四棱锥中,底面为正方形,且,又为的中点,且,且,则四边形为平行四边形,,平面,平面,平面;(2)连接交于,则为的中点,又为的中点,,又,(或其补角)为异面直线和所成角,在正四棱锥中,由为的中点,且,,设,则,,,则,因此,异面直线和所成角的余弦值为.【题目点拨】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了异面直线所成角的求法,是中档题.18、(1)(2)【解题分析】
(1)令,正弦定理,得,代入面积公式计算得到答案.(2)由题意得到,化简得到,,再利用面积公式得到答案.【题目详解】(1)因为的平分线,令在中,,由正弦定理,得所以.(2)因为,所以,又由,得,,因为,所以所以.【题目点拨】本题考查了面积的计算,意在考查学生灵活利用正余弦定理和面积公式解决问题的能力.19、(I)或;(II).【解题分析】
(I)令,将有三个零点问题,转化为有三个不同的解的解决.画出和的图像,结合图像以及二次函数的判别式分类讨论,由此求得的值.(II)令,将恒成立不等式等价转化为恒成立,通过对分类讨论,求得的最大值,由此求得的取值范围.【题目详解】(I)由题意等价于有三个不同的解由,可得其函数图象如图所示:联立方程:,由可得结合图象可知.同理,由可得,因为,结合图象可知,综上可得:或.(Ⅱ)设,原不就价于,两边同乘得:,设,原题等价于的最大值.(1)当时,,易得,(2),,易得,所以的最大值为16,即,故.【题目点拨】本小题主要考查根据函数零点个数求参数,考查数形结合的数学思想方法,考查化归与转化的数学思想方法,考查不等式恒成立问题的求解策略,考查分类讨论的数学思想,属于难题.20、(1)(2)【解题分析】
(1)利用向量的数量积化简即可得,再根据,求出的范围结合图像即可解决.(2)根据(1)求出,再根据正弦函数的单调性求出的单调区间即可.【题目详解】解:(1)因为所以,所以,所以(2)解法一:令得因为函数在上是单调递增函数,所以存在,使得,所以有因为,所以所以,又因为,得所以从而有所以,所以解法二:由,得因为所以所以解得又所以【题目点拨】本题主要考查了正弦函数在给定区间是的最值以及根据根据函数的单调性求参数.属于中等题,解决本题的关键是记住正弦函数的单调性、最值等.21、(1),;(2)时,年平均费用最小,最小值为3万元.【解题分析】试题分析:根据题意可知,汽车使用年的维修费用的和为,而第一年的维修费用是万元,以后逐年递增万元,每一年的维修费用形成以为首项,为公差的等差数列,根据等差数列的前项和即可求出的解析式;将购车费、每
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年儿童教育游戏化课程开发与实施指南
- 大学数学编程题目及答案
- 2025年动漫产业链协同创新模式深度解析报告001
- 红十字会考试试题及答案
- 【龙岩】2025年福建龙岩市武平县公开招聘事业单位工作人员61人笔试历年典型考题及考点剖析附带答案详解
- 【绥化】2025年黑龙江绥化市望奎县事业单位引进人才16人笔试历年典型考题及考点剖析附带答案详解
- 【惠州】2025年“百万英才汇南粤”广东惠州市惠阳区招聘事业单位工作人员25人笔试历年典型考题及考点剖析附带答案详解
- 【咸宁】2025年湖北咸宁市通城县事业单位公开招聘工作人员330人笔试历年典型考题及考点剖析附带答案详解
- 2205年华润电力社会招聘岗位(99个)笔试参考题库附带答案详解
- 2025湖北恩施州恩施市福牛物业有限公司招聘10人笔试参考题库附带答案详解
- 国企财务测试题及答案
- 死亡报卡培训试题及答案
- 《鼻腔止血材料研究》课件
- 中医理疗养生馆创业计划
- 2025-2030中国羟丙基壳聚糖行业市场发展趋势与前景展望战略研究报告
- 饭店兑店合同协议
- 2025-2030冷链物流行业市场发展现状及并购重组策略与投融资研究报告
- 血液透析医疗质量管理
- 充电间防火管理制度
- 瓷砖行业法规与消费者权益-全面剖析
- 2025年全国安全生产月安全生产知识竞赛抢答题库及答案(共200题)
评论
0/150
提交评论