2024届湖南省娄底市娄星区数学高一第二学期期末经典试题含解析_第1页
2024届湖南省娄底市娄星区数学高一第二学期期末经典试题含解析_第2页
2024届湖南省娄底市娄星区数学高一第二学期期末经典试题含解析_第3页
2024届湖南省娄底市娄星区数学高一第二学期期末经典试题含解析_第4页
2024届湖南省娄底市娄星区数学高一第二学期期末经典试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省娄底市娄星区数学高一第二学期期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知为递增等比数列,则()A. B.5 C.6 D.2.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是()A. B. C. D.3.若直线与直线平行,则实数A.0 B.1 C. D.4.在中,角A,B,C所对的边分别为a,b,c,若,,则的值为()A. B. C. D.5.下图是实现秦九韶算法的一个程序框图,若输入的,,依次输入的为2,2,5,则输出的()A.10 B.12 C.60 D.656.从装有2个白球和2个黑球的口袋内任取两个球,那么互斥而不对立的事件是A.至少有一个黑球与都是黑球 B.至少有一个黑球与至少有一个白球C.恰好有一个黑球与恰好有两个黑球 D.至少有一个黑球与都是白球7.若直线经过点,则此直线的倾斜角是()A. B. C. D.8.在长方体中,,,则异面直线与所成角的余弦值为()A. B. C. D.9.已知数列是公差不为零的等差数列,是等比数列,,,则下列说法正确的是()A. B.C. D.与的大小不确定10.某小组有3名男生和2名女生,从中任选2名学生参加演讲比赛,那么下列互斥但不对立的两个事件是()A.“至少1名男生”与“全是女生”B.“至少1名男生”与“至少有1名是女生”C.“至少1名男生”与“全是男生”D.“恰好有1名男生”与“恰好2名女生”二、填空题:本大题共6小题,每小题5分,共30分。11.若点,关于直线l对称,那么直线l的方程为________.12.已知,,若,则的取值范围是__________.13.在空间直角坐标系中,三棱锥的各顶点都在一个半径为的球面上,为球心,,,,,则球的体积与三棱锥的体积之比是_____.14.若无穷等比数列的各项和等于,则的取值范围是_____.15.把函数的图像上各点向右平移个单位,再把横坐标变为原来的一半,纵坐标扩大到原来的4倍,则所得的函数的对称中心坐标为________16.计算:________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等比数列的前项和为,公比,,.(1)求等比数列的通项公式;(2)设,求的前项和.18.随着互联网的不断发展,手机打车软件APP也不断推出.在某地有A、B两款打车APP,为了调查这两款软件叫车后等候的时间,用这两款APP分别随机叫了50辆车,记录了候车时间如下表:A款软件:候车时间(分钟)车辆数212812142B款软件:候车时间(分钟)车辆数21028721(1)试画出A款软件候车时间的频率分布直方图,并估计它的众数及中位数;(2)根据题中所给的数据,将频率视为概率(i)能否认为B款软件打车的候车时间不超过6分钟的概率达到了75%以上?(ii)仅从两款软件的平均候车时间来看,你会选择哪款打车软件?19.如图所示,在直角坐标系中,点,,点P,Q在单位圆上,以x轴正半轴为始边,以射线为终边的角为,以射线为终边的角为,满足.(1)若,求(2)当点P在单位圆上运动时,求函数的解析式,并求的最大值.20.已知.(1)求与的夹角;(2)求.21.已知数列和满足:,,,,且是以q为公比的等比数列.(1)求证:;(2)若,试判断是否为等比数列,并说明理由.(3)求和:.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】

设数列的公比为,根据等比数列的性质,得,又由,求得,进而可求解的值,得到答案.【题目详解】根据题意,等比数列中,设其公比为,因为,则有,又由,且,解得,所以,所以,故选D.【题目点拨】本题主要考查了等比数列的通项公式和等比数列的性质的应用,其中解答中熟练应用等比数列的性质,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.2、D【解题分析】

先求出AB的长,再求点P到直线AB的最小距离和最大距离,即得△ABP面积的最小值和最大值,即得解.【题目详解】由题得,由题得圆心到直线AB的距离为,所以点P到直线AB的最小距离为2-1=1,最大距离为2+1=3,所以△ABP的面积的最小值为,最大值为.所以△ABP的面积的取值范围为[1,3].故选D【题目点拨】本题主要考查点到直线的距离的计算,考查面积的最值问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.3、B【解题分析】

根据两直线的平行关系,列出方程,即可求解实数的值,得到答案.【题目详解】由题意,当时,显然两条直线不平行,所以;由两条直线平行可得:,解得,当时,直线方程分别为:,,显然平行,符合题意;当时,直线方程分别为,,很显然两条直线重合,不合题意,舍去,所以,故选B.【题目点拨】本题主要考查了两直线的位置关系的应用,其中解答中熟记两直线平行的条件,准去计算是解答的关键,着重考查了运算与求解能力,属于基础题.4、D【解题分析】

由正弦定理及余弦定理可得,,然后求解即可.【题目详解】解:由可得,则,①又,所以,即,所以②由①②可得:,由余弦定理可得,故选:D.【题目点拨】本题考查了正弦定理及余弦定理的综合应用,重点考查了两角和的正弦公式,属中档题.5、D【解题分析】,,判断否,,,判断否,,,判断是,输出.故选.6、C【解题分析】

列举每个事件所包含的基本事件,结合互斥事件和对立事件的定义,依次验证即可【题目详解】对于A:事件:“至少有一个黑球”与事件:“都是黑球”可以同时发生,如:两个都是黑球,∴这两个事件不是互斥事件,∴A不正确对于B:事件:“至少有一个黑球”与事件:“至少有一个白球”可以同时发生,如:一个白球一个黑球,∴B不正确对于C:事件:“恰好有一个黑球”与事件:“恰有两个黑球”不能同时发生,但从口袋中任取两个球时还有可能是两个都是白球,∴两个事件是互斥事件但不是对立事件,∴C正确对于D:事件:“至少有一个黑球”与“都是白球”不能同时发生,但一定会有一个发生,∴这两个事件是对立事件,∴D不正确故选C.【题目点拨】本题考查互斥事件与对立事件.首先要求理解互斥事件和对立事件的定义,理解互斥事件与对立事件的联系与区别.同时要能够准确列举某一事件所包含的基本事件.属简单题7、D【解题分析】

先通过求出两点的斜率,再通过求出倾斜角的值。【题目详解】,选D.【题目点拨】先通过求出两点的斜率,再通过求出倾斜角的值。需要注意的是斜率不存在的情况。8、C【解题分析】

连接,交于,取的中点,连接、,可以证明是异面直线与所成角,利用余弦定理可求其余弦值.【题目详解】连接,交于,取的中点,连接.由长方体可得四边形为矩形,所以为的中点,因为为的中点,所以,所以或其补角是异面直线与所成角.在直角三角形中,则,,所以.在直角三角形中,,在中,,故选C.【题目点拨】空间中的角的计算,可以建立空间直角坐标系把角的计算归结为向量的夹角的计算,也可以构建空间角,把角的计算归结平面图形中的角的计算.9、A【解题分析】

设等比数列的公比为,结合题中条件得出且,将、、、用与表示,利用因式分解思想以及基本不等式可得出与的不等关系,并结合等差数列下标和性质可得出与的大小关系.【题目详解】设等比数列的公比为,由于等差数列是公差不为零,则,从而,且,得,,,即,另一方面,由等差数列的性质可得,因此,,故选:A.【题目点拨】本题考查等差数列和等比数列性质的应用,解题的关键在于将等比中的项利用首项和公比表示,并进行因式分解,考查分析问题和解决问题的能力,属于中等题.10、D【解题分析】

从3名男生和2名女生中任选2名学生的所有结果有“2名男生”、“2名女生”、“1名男生和1名女生”.选项A中的两个事件为对立事件,故不正确;选项B中的两个事件不是互斥事件,故不正确;选项C中的两个事件不是互斥事件,故不正确;选项D中的两个事件为互斥但不对立事件,故正确.选D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】

利用直线垂直求出对称轴斜率,利用中点坐标公式求出中点,再由点斜式可得结果.【题目详解】求得,∵点,关于直线l对称,∴直线l的斜率1,直线l过AB的中点,∴直线l的方程为,即.故答案为:.【题目点拨】本题主要考查直线垂直的性质,考查了直线点斜式方程的应用,属于基础题.12、【解题分析】数形结合法,注意y=,y≠0等价于x2+y2=9(y>0),它表示的图形是圆x2+y2=9在x轴之上的部分(如图所示).结合图形不难求得,当-3<b≤3时,直线y=x+b与半圆x2+y2=9(y>0)有公共点.13、【解题分析】

首先根据坐标求出三棱锥的体积,再计算出球的体积即可.【题目详解】有题知建立空间直角坐标系,如图所示由图知:平面,...故答案为:【题目点拨】本题主要考查三棱锥的外接球,根据题意建立空间直角坐标系为解题的关键,属于中档题.14、.【解题分析】

根据题意可知,,从而得出,再由,即可求出的取值范围.【题目详解】解:由题意可知,,且,,,,或,故的取值范围是,故答案为:.【题目点拨】本题主要考查等比数列的极限问题,解题时要熟练掌握无穷等比数列的极限和,属于基础题.15、,【解题分析】

根据三角函数的图象变换,求得函数的解析式,进而求得函数的对称中心,得到答案.【题目详解】由题意,把函数的图像上各点向右平移个单位,可得,再把图象上点的横坐标变为原来的一半,可得,把函数纵坐标扩大到原来的4倍,可得,令,解得,所以函数的对称中心为.故答案为:.【题目点拨】本题主要考查了三角函数的图象变换,以及三角函数的对称中心的求解,其中解答中熟练三角函数的图象变换,以及三角函数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题.16、3【解题分析】

直接利用数列的极限的运算法则求解即可.【题目详解】.故答案为:3【题目点拨】本题考查数列的极限的运算法则,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)将已知两式作差,利用等比数列的通项公式,可得公比,由等比数列的求和可得首项,进而得到所求通项公式;(2)求得bn=n,,由裂项相消求和可得答案.【题目详解】(1)等比数列的前项和为,公比,①,②.②﹣①,得,则,又,所以,因为,所以,所以,所以;(2),所以前项和.【题目点拨】裂项相消法适用于形如(其中是各项均不为零的等差数列,c为常数)的数列.裂项相消法求和,常见的有相邻两项的裂项求和,还有一类隔一项的裂项求和,如或.18、(1)直方图见解析,众数为9,中位数为6.5(2)(i)能(ii)B款【解题分析】

(1)画出频率分布直方图,计算众数和中位数得到答案.(2)计算概率为,得到答案;分别计算两个软件的平均候车时间比较得到答案.【题目详解】(1)频率分布直方图如图:它的众数为9,它的中位数为:.(2)(i)B款软件打车的候车时间不超过6分钟的概率为.所以可以认为B款软件打车的候车时间不超过6分钟的概率达到了75%以上.(ii)A款软件打车的平均候车时间为:(分钟).B款软件打车的平均候车时间为:(分钟).所以选择B款软件打车软件.【题目点拨】本题考查了频率分布直方图,平均值,中位数,众数,意在考查学生的应用能力.19、(1)(2),最大值.【解题分析】

(1)由角的定义求出,再由数量积定义计算;(2)由三角函数定义写出坐标,求出的坐标,计算出,利用两角和的正弦公式可化函数为一个三角函数形式,由正弦函数性质可求得最大值.【题目详解】(1)由图可知,,..(2)由题意可知,.因为,,所以.所以,.所以.当()时,取得最大值.【题目点拨】本题考查任意角的定义,平面向量的数量积的坐标运算,考查两角和的正弦公式、诱导公式及正弦函数的性质.本题解题关键是掌握三角函数的定义,表示出坐标.20、(1);(2).【解题分析】

(1)由得到,又代入夹角公式,求出的值;(2)利用公式进行模的求值.【题目详解】(1)因为,所以,因为,因为,所以.(2).【题目点拨】本题考查数量积的运算及其变形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论