




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省杭州八校联盟2024届数学高一下期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,已知,则的面积为()A. B. C. D.2.公差不为零的等差数列的前项和为.若是的等比中项,,则等于()A.18 B.24 C.60 D.903.已知为等差数列,为其前项和.若,则()A. B. C. D.4.圆C:x2+yA.2 B.3 C.1 D.25.已知等差数列的公差d>0,则下列四个命题:①数列是递增数列;②数列是递增数列;③数列是递增数列;④数列是递增数列;其中正确命题的个数为()A.1 B.2 C.3 D.46.已知实数满足,那么的最小值为(
)A. B. C. D.7.已知两座灯塔和与海洋观察站的距离都等于5,灯塔在观察站的北偏东,灯塔在观察站的南偏东,则灯塔与灯塔的距离为()A. B. C. D.8.设为等差数列的前项和,.若,则()A.的最大值为 B.的最小值为 C.的最大值为 D.的最小值为9.等比数列的前n项和为,若,则等于()A.-3 B.5 C.33 D.-3110.已知a>0,x,y满足约束条件,若z=2x+y的最小值为1,则a=A. B. C.1 D.2二、填空题:本大题共6小题,每小题5分,共30分。11.如图,点为正方形边上异于点的动点,将沿翻折成,使得平面平面,则下列说法中正确的是__________.(填序号)(1)在平面内存在直线与平行;(2)在平面内存在直线与垂直(3)存在点使得直线平面(4)平面内存在直线与平面平行.(5)存在点使得直线平面12.已知等差数列,,,,则______.13.已知,,则______,______.14.中,,,,则______.15.的化简结果是_________.16.若复数z满足z⋅2i=z2+1(其中i三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角,,的对边分别为,,,已知向量,,且.(1)求角的值;(2)若为锐角三角形,且,求的取值范围.18.(1)解方程:;(2)有四个数,其中前三个数成等差数列,后三个数成等比数列,且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数;19.若数列满足:存在正整数,对任意的,使得成立,则称为阶稳增数列.(1)若由正整数构成的数列为阶稳增数列,且对任意,数列中恰有个,求的值;(2)设等比数列为阶稳增数列且首项大于,试求该数列公比的取值范围;(3)在(1)的条件下,令数列(其中,常数为正实数),设为数列的前项和.若已知数列极限存在,试求实数的取值范围,并求出该极限值.20.如图,在平面直角坐标系xoy中,锐角和钝角的终边分别与单位圆交于A,B两点.(1)若点A的纵坐标是点B的纵坐标是,求的值;(2)若,求的值.21.某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据.x681012y2356(1)请根据上表提供的数据,求出y关于x的线性回归方程;(2)判断该高三学生的记忆力x和判断力是正相关还是负相关;并预测判断力为4的同学的记忆力.(参考公式:)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】
根据三角形的面积公式求解即可.【题目详解】的面积.
故选:B【题目点拨】本题主要考查了三角形的面积公式,属于基础题.2、C【解题分析】
由等比中项的定义可得,根据等差数列的通项公式及前n项和公式,列方程解出和,进而求出.【题目详解】因为是与的等比中项,所以,即,整理得,又因为,所以,故,故选C.【题目点拨】该题考查的是有关等差数列求和问题,涉及到的知识点有等差数列的通项,等比中项的定义,等差数列的求和公式,正确应用相关公式是解题的关键.3、D【解题分析】试题分析:设等差数列的公差为,由题意得,解得,所以,故答案为D.考点:1、数列的通项公式;2、数列的前项和.4、D【解题分析】
由点到直线距离公式,求出圆心到直线y=x的距离d,再由弦长=2r【题目详解】因为圆C:x2+y2-2x=0所以圆心(1,0)到直线y=x的距离为d=1-0因此,弦长=2r故选D【题目点拨】本题主要考查求圆被直线所截弦长问题,常用几何法处理,属于常考题型.5、B【解题分析】
对于各个选项中的数列,计算第n+1项与第n项的差,看此差的符号,再根据递增数列的定义得出结论.【题目详解】设等差数列,d>0∵对于①,n+1﹣n=d>0,∴数列是递增数列成立,是真命题.对于②,数列,得,,所以不一定是正实数,即数列不一定是递增数列,是假命题.对于③,数列,得,,不一定是正实数,故是假命题.对于④,数列,故数列是递增数列成立,是真命题.故选:B.【题目点拨】本题考查用定义判断数列的单调性,考查学生的计算能力,正确运用递增数列的定义是关键,属于基础题.6、A【解题分析】
表示直线上的点到原点的距离,利用点到直线的距离公式求得最小值.【题目详解】依题意可知表示直线上的点到原点的距离,故原点到直线的距离为最小值,即最小值为,故选A.【题目点拨】本小题主要考查点到直线的距离公式,考查化归与转化的数学思想方法,属于基础题.7、B【解题分析】
根据题意画出ABC的相对位置,再利用正余弦定理计算.【题目详解】如图所示,,,选B.【题目点拨】本题考查解三角形画出相对位置是关键,属于基础题.8、C【解题分析】
由已知条件推导出(n2﹣n)d<2n2d,从而得到d>0,所以a1<0,a8>0,由此求出数列{Sn}中最小值是S1.【题目详解】∵(n+1)Sn<nSn+1,∴Sn<nSn+1﹣nSn=nan+1即na1na1+n2d,整理得(n2﹣n)d<2n2d∵n2﹣n﹣2n2=﹣n2﹣n<0∴d>0∵1<0∴a1<0,a8>0数列的前1项为负,故数列{Sn}中最小值是S1故选C.【题目点拨】本题考查等差数列中前n项和最小值的求法,是中档题,解题时要认真审题,注意等差数列的性质的灵活运用.9、C【解题分析】
由等比数列的求和公式结合条件求出公比,再利用等比数列求和公式可求出.【题目详解】设等比数列的公比为(公比显然不为1),则,得,因此,,故选C.【题目点拨】本题考查等比数列基本量计算,利用等比数列求和公式求出其公比,是解本题的关键,一般在求解等比数列问题时,有如下两种方法:(1)基本量法:利用首项和公比列方程组解出这两个基本量,然后利用等比数列的通项公式或求和公式来进行计算;(2)性质法:利用等比数列下标有关的性质进行转化,能起到简化计算的作用.10、B【解题分析】
画出不等式组表示的平面区域如图所示:当目标函数z=2x+y表示的直线经过点A时,取得最小值,而点A的坐标为(1,),所以,解得,故选B.【考点定位】本小题考查线性规划的基础知识,难度不大,线性规划知识在高考中一般以小题的形式出现,是高考的重点内容之一,几乎年年必考.二、填空题:本大题共6小题,每小题5分,共30分。11、(2)(4)【解题分析】
采用逐一验证法,利用线面的位置关系判断,可得结果.【题目详解】(1)错,若在平面内存在直线与平行,则//平面,可知//,而与相交,故矛盾(2)对,如图作,根据题意可知平面平面所以,作,点在平面,则平面,而平面,所以,故正确(3)错,若平面,则,而所以平面,则,矛盾(4)对,如图延长交于点连接,作//平面,平面,平面,所以//平面,故存在(5)错,若平面,则又,所以平面所以,可知点在以为直径的圆上又该圆与无交点,所以不存在.故答案为:(2)(4)【题目点拨】本题主要考查线线,线面,面面之间的关系,数形结合在此发挥重要作用,属中档题.12、【解题分析】
利用等差中项的基本性质求得,,并利用等差中项的性质求出的值,由此可得出的值.【题目详解】由等差中项的性质可得,同理,由于、、成等差数列,所以,则,因此,.故答案为:.【题目点拨】本题考查利用等差中项的性质求值,考查计算能力,属于基础题.13、【解题分析】
由的值,可求出的值,再判断角的范围,可判断出,进而将平方,可求出答案.【题目详解】由题意,,因为,所以,即;又因为,所以,即,而,由于,可知,所以,则,即.故答案为:;.【题目点拨】本题考查同角三角函数基本关系的应用,考查二倍角公式的应用,考查学生的计算求解能力,属于中档题.14、【解题分析】
根据,得到的值,再由余弦定理,得到的值.【题目详解】因为,所以,在中,,,由余弦定理得.所以.故答案为:【题目点拨】本题考查二倍角的余弦公式,余弦定理解三角形,属于简单题.15、【解题分析】原式,因为,所以,且,所以原式.16、1【解题分析】设z=a+bi,a,b∈R,则由z⋅2则-2b=a2+b2+12a=0三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】
(1)根据和正弦定理余弦定理求得.(2)先利用正弦定理求出R=1,再把化成,再利用三角函数的图像和性质求解.【题目详解】(1)因为,所以,由正弦定理化角为边可得,即,由余弦定理可得,又,所以.(2)由(1)可得,设的外接圆的半径为,因为,,所以,则,因为为锐角三角形,所以,即,所以,所以,所以,故的取值范围为.【题目点拨】(1)本题主要考查正弦定理余弦定理解三角形,考查三角函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)对于复合函数的问题自然是利用复合函数的性质解答,求复合函数的最值,一般从复合函数的定义域入手,结合三角函数的图像一步一步地推出函数的最值.18、(1)或。(2)、、、,或、、、【解题分析】
(1)由正弦的倍角公式,化简得,得到解得或,结合正弦和余弦的性质,即可求解;(2)设这四个数分别为,得到,且,即可求解,得到答案.【题目详解】(1)由题意,方程,可得,即,解得或,所以或.(2)由题意,设这四个数分别为,可得,且,解得:或,所以这四个数为:、、、,或、、、.【题目点拨】本题主要考查了三角方程的求解,以及等差、等比中项的应用,其中解答中熟记三角恒等变换的公式,以及等差、等比数列中项公式,准确计算是解答的关键,着重考查了推理与计算能力,属于基础题.19、(1);(2);(3).【解题分析】
(1)设,由题意得出,求出正整数的值即可;(2)根据定义可知等比数列中的奇数项构成的等比数列为阶稳增数列,偶数项构成的等比数列也为阶稳增数列,分和两种情况讨论,列出关于的不等式,解出即可;(3)求出,然后分、和三种情况讨论,求出,结合数列的极限存在,求出实数的取值范围.【题目详解】(1)设,由于数列为阶稳增数列,则,对任意,数列中恰有个,则数列中的项依次为:、、、、、、、、、、、、、、、、,设数列中值为的最大项数为,则,由题意可得,即,,解得,因此,;(2)由于等比数列为阶稳增数列,即对任意的,,且.所以,等比数列中的奇数项构成的等比数列为阶稳增数列,偶数项构成的等比数列也为阶稳增数列.①当时,则等比数列中每项都为正数,由可得,整理得,解得;②当时,(i)若为正奇数,可设,则,由,得,即,整理得,解得;(ii)若为正偶数时,可设,则,由,得,即,整理得,解得.所以,当时,等比数列为阶稳增数列.综上所述,实数的取值范围是;(3),由(1)知,则.①当时,,,则,此时,数列的极限不存在;②当时,,,上式下式得,所以,,则.(i)若时,则,此时数列的极限不存在;(ii)当时,,此时,数列的极限存在.综上所述,实数的取值范围是.【题目点拨】本题考查数列新定义“阶稳增数列”的应用,涉及等比数列的单调性问题、数列极限的存在性问题,同时也考查了错位相减法求和,解题的关键就是理解新定义“阶稳增数列”,考查分析问题和解决问题能力,考查了分类讨论思想的应用,属于难题.20、(1);(2)【解题分析】
(1)根据三角函数的定义,求出对应的正弦和余弦值,用正弦的和角公式即可求解;(2)根据题意,先计算出的值,再求解.【题目详解】(1)由三角函数的定义得,,.由角、的终边分别在第一和第二象限,得:,,所以;(2),则根据,即可得,解得:..故.【题目点拨】本题考查三角函数的定义,以及由向量的数量积计算模长,属基础题.2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 场监督管理局举报投诉处理与责任追究规范协议
- 网络攻击溯源分析-第5篇-洞察阐释
- 2025年教育行业合同风险管理报告
- 工业多材料3D打印技术发展-洞察阐释
- 消防工程安装维护协议
- 基于机器学习的云资源优化算法-洞察阐释
- 跨国协作的物联网绿色能源管理研究-洞察阐释
- 工业设备维修机器人技术研究-洞察阐释
- 农业种植区域土壤改良工程合同
- 运输公司货运合同
- 粮食仓储安全生产三项制度
- 江苏省盐城市(2024年-2025年小学六年级语文)部编版期末考试(下学期)试卷及答案
- 2024 大模型典型示范应用案例集-1
- 工业风量光催化净化器安全操作规程
- 金融合规培训
- 【MOOC】航天、人文与艺术-南京航空航天大学 中国大学慕课MOOC答案
- DB21T 3411-2024 城市园林绿化智慧养护技术规程
- 【MOOC】信息检索与利用-江南大学 中国大学慕课MOOC答案
- 南宁红林大酒店扩建工程筹资方案设计
- 小学音乐与科学的跨学科融合
- 措施钢筋专项施工方案
评论
0/150
提交评论