下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学公式及知识点速记一、函数、导数1、函数的单调性(1)设那么上是增函数;上是减函数.(2)设函数在某个区间内可导,若,则为增函数;若,则为减函数.2、函数的奇偶性对于定义域内任意的,都有,则是偶函数;对于定义域内任意的,都有,则是奇函数。奇函数的图象关于原点对称,偶函数的图象关于y轴对称。3、函数在点处的导数的几何意义函数在点处的导数是曲线在处的切线的斜率,相应的切线方程是.4、几种常见函数的导数①;②;③;④;⑤;⑥;⑦;⑧5、导数的运算法则(1).(2).(3).6、会用导数求单调区间、极值、最值7、求函数的极值的方法是:解方程.当时:(1)如果在附近的左侧,右侧,那么是极大值;(2)如果在附近的左侧,右侧,那么是极小值.二、三角函数、三角变换、解三角形、平面向量8、同角三角函数的基本关系式,=.9、正弦、余弦的诱导公式的正弦、余弦,等于的同名函数,前面加上把看成锐角时该函数的符号;的正弦、余弦,等于的余名函数,前面加上把看成锐角时该函数的符号。10、和角与差角公式;;.11、二倍角公式...公式变形:12、三角函数的周期函数,x∈R及函数,x∈R(A,ω,为常数,且A≠0,ω>0)的周期;函数,(A,ω,为常数,且A≠0,ω>0)的周期.13、函数的周期、最值、单调区间、图象变换14、辅助角公式其中15、正弦定理
.16、余弦定理;;.17、三角形面积公式.18、三角形内角和定理在△ABC中,有19、与的数量积(或内积)20、平面向量的坐标运算(1)设A,B,则.(2)设=,=,则=.(3)设=,则21、两向量的夹角公式设=,=,且,则22、向量的平行与垂直..三、数列23、数列的通项公式与前n项的和的关系(数列的前n项的和为).24、等差数列的通项公式;25、等差数列其前n项和公式为.26、等比数列的通项公式;27、等比数列前n项的和公式为或.四、不等式28、已知都是正数,则有,当时等号成立。(1)若积是定值,则当时和有最小值;(2)若和是定值,则当时积有最大值.五、解析几何29、直线的五种方程(1)点斜式(直线过点,且斜率为).(2)斜截式(b为直线在y轴上的截距).(3)两点式()(、()).(4)截距式(分别为直线的横、纵截距,)(5)一般式(其中A、B不同时为0).30、两条直线的平行和垂直若,①;②.31、平面两点间的距离公式(A,B).32、点到直线的距离(点,直线:).33、圆的三种方程(1)圆的标准方程.(2)圆的一般方程(>0).(3)圆的参数方程.34、直线与圆的位置关系直线与圆的位置关系有三种:;;.弦长=其中.35、椭圆、双曲线、抛物线的图形、定义、标准方程、几何性质椭圆:,,离心率,参数方程是.双曲线:(a>0,b>0),,离心率,渐近线方程是通经:(过焦点且垂直于对称轴的直线夹在椭圆内的线段)抛物线:,焦点,准线。抛物线上的点到焦点距离等于它到准线的距离.弦长公式:36、双曲线的方程与渐近线方程的关系(1)若双曲线方程为渐近线方程:.(2)若渐近线方程为双曲线可设为.(3)若双曲线与有公共渐近线可设为(,焦点在x轴上,,焦点在y轴上).37、抛物线的焦半径公式抛物线焦半径.(抛物线上的点到焦点距离等于它到准线的距离。)38、过抛物线焦点的弦长.六、立体几何线线平行常用方法总结:
(1)公理:在空间中平行于同一条直线的两只直线互相平行。
(2)线面平行的性质:如果一条直线和一个平面平行,经过这条直线的平面和这个平面的相交,那么这条直线就和两平面的交线平行。
(3)线面垂直的性质:如果两直线同时垂直于同一平面,那么两直线平行。
(4)面面平行的性质:若两个平行平面同时与第三个平面相交,则它们的交线平行。
线面平行的判定方法:
(1)判定定理:若不在平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行
(2)面面平行的性质:两个平面平行,其中一个平面内的任何一条直线必平行于另一个平面(3)线面垂直的性质:平面外与已知平面的垂线垂直的直线平行于已知平面判定两平面平行的方法:
(1)利用判定定理:如果一个平面内有两条相交直线平行于另一个平面,那么这两个平面平行。
(2)利用判定定理的推论:如果一个平面内有两条相交直线平行于另一个平面内的两条直线,则这两平面平行。
(3)垂直于同一条直线的两个平面平行。
(4)平行于同一个平面的两个平面平行。
30、证明线与线垂直的方法:(1)利用定义(2)线面垂直的性质:如果一条直线垂直于这个平面,那么这条直线垂直于这个平面的任何一条直线。31、证明线面垂直的方法:
(1)线面垂直的定义
(2)线面垂直的判定定理1:如果一条直线与平面内的两条相交直线垂直,则这条直线与这个平面垂直。
(3)线面垂直的判定定理2:如果在两条平行直线中有一条垂直于平面,那么另一条也垂直于这个平面。
(4)面面垂直性质如果两个平面互相垂直那么在一个平面内垂直于它们交线的直线垂直于另一个平面。
(5)若一条直线垂直于两平行平面中的一个平面,则这条直线必垂直于另一个平面
32、判定两个平面垂直的方法:(1)利用定义
(2)判定定理:如果一个平面经过另一个平面的一条垂线,则这两个平面互相垂直。夹在两个平行平面之间的平行线段相等。
经过平面外一点有且仅有一个平面与已知平面平行
两条直线被三个平行平面所截,截得的对应线段成比例39、证明直线与直线平行的方法(1)三角形中位线(2)平行四边形(一组对边平行且相等)40、证明直线与平面平行的方法(1)直线与平面平行的判定定理(证平面外一条直线与平面内的一条直线平行)(2)先证面面平行41、证明平面与平面平行的方法:平面与平面平行的判定定理(一个平面内的两条相交直线分别与另一平面平行)42、证明直线与直线垂直的方法:转化为证明直线与平面垂直43、证明直线与平面垂直的方法(1)直线与平面垂直的判定定理(直线与平面内两条相交直线垂直)(2)平面与平面垂直的性质定理(两个平面垂直,一个平面内垂直交线的直线垂直另一个平面)44、证明平面与平面垂直的方法平面与平面垂直的判定定理(一个平面内有一条直线与另一个平面垂直)45、柱体、椎体、球体的侧面积、表面积、体积计算公式圆柱侧面积=,表面积=圆椎侧面积=,表面积=(是柱体的底面积、是柱体的高).(是锥体的底面积、是锥体的高).球的半径是,则其体积,其表面积.46、异面直线所成角、直线与平面所成角、二面角的平面角的定义及计算47、点到平面距离的计算(定义法、等体积法)48、直棱柱、正棱柱、长方体、正方体的性质:侧棱平行且相等,与底面垂直。正棱锥的性质:侧棱相等,顶点在底面的射影是底面正多边形的中心。七、概率统计4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年宁波东方人力资源服务有限公司招聘外包工作人员备考题库及答案详解一套
- 2026年吉安市吉州区卫生健康委员会面向社会公开招聘编外工作人员36人的备考题库完整答案详解
- 2026年中海物业管理有限公司招聘备考题库含答案详解
- 2026年云南富宁县紧密型医共体归朝分院招聘编外工作人员的备考题库及完整答案详解一套
- 2026年中铁现代物流科技股份有限公司太原分公司招聘备考题库及参考答案详解
- 2026年中铝数为(成都)科技有限责任公司高校毕业生招聘备考题库及1套完整答案详解
- 2026年中冶南方(湖南)工程技术有限公司招聘备考题库及参考答案详解一套
- 小学差旅内控制度
- 中公教育内控制度
- 纪检采购内控制度汇编
- 多源医疗数据融合的联邦学习策略研究
- 仓库-拆除施工方案(3篇)
- 2025至2030中国工业边缘控制器行业运营态势与投资前景调查研究报告
- 磁电感应式传感器课件
- 防拐卖安全教育课件文库
- 2026届湖南省常德市石门一中生物高二第一学期期末统考试题含解析
- 美学概论论文
- 广东省珠海市文园中学教育集团2025-2026学年九年级上学期期中语文试题(含答案及解析)
- 2025年6月浙江省高考历史试卷真题(含答案解析)
- 【MOOC】《国际商务》(暨南大学)期末考试慕课答案
- 肺癌全程护理计划
评论
0/150
提交评论