版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省宁波市北仑区江南中学2023-2024学年九年级数学第一学期期末复习检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图所示,∆ABC的顶点在正方形网格的格点上,则cosB=()A. B. C. D.2.下面是“育”“才”“水”“井"四个字的甲骨文,是中心对称图形但不是轴对称图形的是()A. B. C. D.3.在△ABC中,AB=AC=13,BC=24,则tanB等于()A. B. C. D.4.的绝对值为()A. B. C. D.5.如图,菱形在第一象限内,,反比例函数的图象经过点,交边于点,若的面积为,则的值为()A. B. C. D.46.如图,是二次函数图象的一部分,在下列结论中:①;②;③有两个相等的实数根;④;其中正确的结论有()A.1个 B.2个 C.3个 D.4个7.如图,由一些完全相同的小正方体搭成的几何体的左视图和俯视图,则这个几何体的主视图不可能是()A. B. C. D.8.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为().A. B. C. D.9.如图,在中,,若,,则与的比是()A. B. C. D.10.已知点是线段的黄金分割点,且,,则长是()A. B. C. D.11.如图,空心圆柱的俯视图是()A. B. C. D.12.如图,正方形中,,以为圆心,长为半径画,点在上移动,连接,并将绕点逆时针旋转至,连接.在点移动的过程中,长度的最小值是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,将Rt△ABC绕直角顶点A顺时针旋转90°得到△AB′C′,连结BB′,若∠1=25°,则∠C的度数是___________.14.如图,在轴的正半轴上依次截取……,过点、、、、……,分别作轴的垂线与反比例函数的图象相交于点、、、、……,得直角三角形、,,,……,并设其面积分别为、、、、……,则__.的整数).15.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD于点E.若AB=6,则△AEC的面积为_____.16.PA是⊙O的切线,切点为A,PA=2,∠APO=30°,则阴影部分的面积为_____.17.已知关于x的方程的一个根是1,则k的值为__________.18.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若AD:AB=4:9,则S△ADE:S△ABC=.三、解答题(共78分)19.(8分)某店以每件60元的进价购进某种商品,原来按每件100元的售价出售,一天可售出50件;后经市场调查,发现这种商品每件售价每降低1元,其销量可增加5件.(1)该店销售该商品原来一天可获利润元.(2)设后来该商品每件售价降价元,此店一天可获利润元.①若此店为了尽量多地增加该商品的销售量,且一天仍能获利2625元,则每件商品的售价应降价多少元?②求与之间的函数关系式,当该商品每件售价为多少元时,该店一天所获利润最大?并求最大利润值.20.(8分)下面是小华同学设计的“作三角形的高线”的尺规作图的过程.已知:如图1,△ABC.求作:AB边上的高线.作法:如图2,①分别以A,C为圆心,大于长为半径作弧,两弧分别交于点D,E;②作直线DE,交AC于点F;③以点F为圆心,FA长为半径作圆,交AB的延长线于点M;④连接CM.则CM为所求AB边上的高线.根据上述作图过程,回答问题:(1)用直尺和圆规,补全图2中的图形;(2)完成下面的证明:证明:连接DA,DC,EA,EC,∵由作图可知DA=DC=EA=EC,∴DE是线段AC的垂直平分线.∴FA=FC.∴AC是⊙F的直径.∴∠AMC=______°(___________________________________)(填依据),∴CM⊥AB.即CM就是AB边上的高线.21.(8分)在直角坐标平面内,直线分别与轴、轴交于点,.抛物线经过点与点,且与轴的另一个交点为.点在该抛物线上,且位于直线的上方.(1)求上述抛物线的表达式;(2)联结,,且交于点,如果的面积与的面积之比为,求的余切值;(3)过点作,垂足为点,联结.若与相似,求点的坐标.22.(10分)2019年度双十一在九龙坡区杨家坪的各大知名商场举行“国产家用电器惠民抢购日”优惠促销大行动,许多家用电器经销商都利用这个契机进行打折促销活动.商社电器某国产品牌经销商的某款超高清大屏幕液晶电视机每套成本为4000元,在标价6000元的基础上打9折销售.(1)现在该经销商欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于?(2)据媒体爆料,有一些经销商先提高商品价格后再降价促销,存在欺诈行为.重百电器另一个该品牌的经销商也销售相同的超高清大屏幕液晶电视机,其成本、标价与商社电器的经销商一致,以前每周可售出20台,现重百的经销商先将标价提高,再大幅降价元,使得这款电视机在2019年11月11日那一天卖出的数量就比原来一周卖出的数量增加了,这样一天的利润达到22400元,求的值.(利润=售价-成本)23.(10分)如图,在中,,是边上的高,是边上的一个动点(不与,重合),,,垂足分别为,.(1)求证:;(2)与是否垂直?若垂直,请给出证明,若不垂直,请说明理由.24.(10分)如图,在△ABC中,∠C=90°,AC=6cm,BC=8m,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从点C出发沿CB边向点B以2cm/s的速度移动,当其中一点到达终点时,另一点也随之停止运动.(1)如果点P,Q同时出发,经过几秒钟时△PCQ的面积为8cm2?(2)如果点P,Q同时出发,经过几秒钟时以P、C、Q为顶点的三角形与△ABC相似?25.(12分)某市2012年国民经济和社会发展统计公报显示,2012年该市新开工的住房有商品房、廉租房、经济适用房和公共租赁房四种类型.老王对这四种新开工的住房套数和比例进行了统计,并将统计结果绘制成下面两幅统计图,请你结合图中所给信息解答下列问题:(1)求经济适用房的套数,并补全图1;(2)假如申请购买经济适用房的对象中共有950人符合购买条件,老王是其中之一.由于购买人数超过房子套数,购买者必须通过电脑摇号产生.如果对2012年新开工的经济适用房进行电脑摇号,那么老王被摇中的概率是多少?(3)如果计划2014年新开工廉租房建设的套数要达到720套,那么2013~2014这两年新开工廉租房的套数的年平均增长率是多少?26.如图,在中,,,,点从点开始沿边向点以的速度移动,同时,点从点开始沿边向点以的速度移动(到达点,移动停止).(1)如果,分别从,同时出发,那么几秒后,的长度等于?(2)在(1)中,的面积能否等于?请说明理由.
参考答案一、选择题(每题4分,共48分)1、C【分析】先设小正方形的边长为1,再建构直角三角形,然后根据锐角三角函数的定义求解即可;【详解】解:如图,过A作AD⊥CB于D,设小正方形的边长为1,则BD=AD=3,AB=∴cos∠B=;故选C.【点睛】本题主要考查了锐角三角函数的定义,勾股定理,掌握锐角三角函数的定义,勾股定理是解题的关键.2、C【解析】根据中心对称图形与轴对称图形的区别判断即可,轴对称图形一定要沿某直线折叠后直线两旁的部分互相重合,关键抓两点:一是沿某直线折叠,二是两部分互相重合;中心对称图形是图形绕某一点旋转180°后与原来的图形重合,关键也是抓两点:一是绕某一点旋转,二是与原图形重合.【详解】解:A.不是中心对称图形也不是轴对称图形,不符合题意;B.是轴对称图形不是中心对称图形,不符合题意;C.是中心对称图形不是轴对称图形,符合题意;D.是轴对称图形也是中心对称图形,不符合题意;故答案为:C.【点睛】本题考查的知识点是轴对称图形与中心对称图形的判断,熟记二者的区别是解题的关键.3、B【解析】如图,等腰△ABC中,AB=AC=13,BC=24,过A作AD⊥BC于D,则BD=12,在Rt△ABD中,AB=13,BD=12,则,AD=,故tanB=.故选B.【点睛】考查的是锐角三角函数的定义、等腰三角形的性质及勾股定理.4、C【分析】根据绝对值的定义即可求解.【详解】的绝对值为故选C.【点睛】此题主要考查绝对值,解题的关键是熟知其定义.5、C【分析】过A作AE⊥x轴于E,设OE=,则AE=,OA=,即菱形边长为,再根据△AOD的面积等于菱形面积的一半建立方程可求出,利用点A的横纵坐标之积等于k即可求解.【详解】如图,过A作AE⊥x轴于E,设OE=,在Rt△AOE中,∠AOE=60°∴AE=,OA=∴A,菱形边长为由图可知S菱形AOCB=2S△AOD∴,即∴∴故选C.【点睛】本题考查了反比例函数与几何综合问题,利用特殊角度的三角函数值表示出菱形边长及A点坐标是解决本题的关键.6、C【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对各个结论进行判断.【详解】解:由抛物线的开口方向向上可推出a>0,
与y轴的交点为在y轴的负半轴上可推出c=-1<0,
对称轴为,a>0,得b<0,
故abc>0,故①正确;
由对称轴为直线,抛物线与x轴的一个交点交于(2,0),(3,0)之间,则另一个交点在(0,0),(-1,0)之间,
所以当x=-1时,y>0,
所以a-b+c>0,故②正确;
抛物线与y轴的交点为(0,-1),由图象知二次函数y=ax2+bx+c图象与直线y=-1有两个交点,
故ax2+bx+c+1=0有两个不相等的实数根,故③错误;
由对称轴为直线,由图象可知,所以-4a<b<-2a,故④正确.
所以正确的有3个,故选:C.【点睛】本题考查了二次函数的图象与系数的关系,解答此类问题的关键是掌握二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定,解题时要注意数形结合思想的运用.7、A【分析】由左视图可得出这个几何体有2层,由俯视图可得出这个几何体最底层有4个小正方体.分情况讨论即可得出答案.【详解】解:由题意可得出这个几何体最底层有4个小正方体,有2层,当第二层第一列有1个小正方体时,主视图为选项B;当第二层第二列有1个小正方体时,主视图为选项C;当第二层第一列,第二列分别有1个小正方体时,主视图为选项D;故选:A.【点睛】本题考查的知识点是简单几何体的三视图,根据所给三视图能够还原几何体是解此题的关键.8、B【分析】朝上的数字为偶数的有3种可能,再根据概率公式即可计算.【详解】依题意得P(朝上一面的数字是偶数)=故选B.【点睛】此题主要考查概率的计算,解题的关键是熟知概率公式进行求解.9、D【分析】根据平行即可证出△ADE∽△ABC,然后根据相似三角形的面积比等于相似比的平方,即可得出结论.【详解】解:∵∴△ADE∽△ABC∴故选D.【点睛】此题考查的是相似三角形的判定及性质,掌握利用平行判定两个三角形相似和相似三角形的面积比等于相似比的平方是解决此题的关键.10、C【分析】利用黄金分割比的定义即可求解.【详解】由黄金分割比的定义可知∴故选C【点睛】本题主要考查黄金分割比,掌握黄金分割比是解题的关键.11、D【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看是三个水平边较短的矩形,中间矩形的左右两边是虚线,故选:D.【点睛】本题考查了三视图,俯视图是指从上往下看得到的图形。注意:看的见的线画实线,看不见的线画虚线.12、D【分析】通过画图发现,点的运动路线为以A为圆心、1为半径的圆,当在对角线CA上时,C最小,先证明△PBC≌△BA,则A=PC=1,再利用勾股定理求对角线CA的长,则得出C的长.【详解】如图,当在对角线CA上时,C最小,连接CP,
由旋转得:BP=B,∠PB=90°,
∴∠PBC+∠CB=90°,
∵四边形ABCD为正方形,
∴BC=BA,∠ABC=90°,
∴∠AB+∠CB=90°,
∴∠PBC=∠AB,在△PBC和△BA中,,
∴△PBC≌△BA,
∴A=PC=1,
在Rt△ABC中,AB=BC=4,由勾股定理得:,∴C=AC-A=,即C长度的最小值为,故选:D.【点睛】本题考查了正方形的性质、旋转的性质和最小值问题,寻找点的运动轨迹是本题的关键.二、填空题(每题4分,共24分)13、70°【详解】解:∵Rt△ABC绕直角顶点A顺时针旋转90°得到△AB′C′,∴AB=AB′,∴△ABB′是等腰直角三角形,∴∠ABB′=45°,∴∠AC′B′=∠1+∠ABB′=25°+45°=70°,由旋转的性质得∠C=∠AC′B′=70°.故答案为70°.【点睛】本题考查旋转的性质,掌握旋转图像对应边相等,对应角相等是本题的解题关键.14、【解析】根据反比例函数y=中k的几何意义再结合图象即可解答.【详解】∵过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,S=|k|.∴=1,=1,∵O=,∴==,同理可得,=1====.故答案是:.【点睛】本题考查反比例函数系数k的几何意义.15、4【分析】根据旋转后AC的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠ECA,利用等角对等边得到AE=CE,设AE=CE=x,表示出AD与DE,利用勾股定理列出关于x的方程,求出方程的解得到x的值,确定出EC的长,即可求出三角形AEC面积.【详解】解:∵旋转后AC的中点恰好与D点重合,即AD=AC′=AC,∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,∴∠DAD′=60°,∴∠DAE=30°,∴∠EAC=∠ACD=30°,∴AE=CE.在Rt△ADE中,设AE=EC=x,则有DE=DC﹣EC=AB﹣EC=6﹣x,AD=×6=2,根据勾股定理得:x2=(6﹣x)2+(2)2,解得:x=4,∴EC=4,则S△AEC=EC•AD=4.故答案为4.【点睛】本题考查了旋转的性质,含30度直角三角形的性质,勾股定理以及等腰三角形的性质的运用,熟练掌握性质及定理是解答本题的关键.16、.【分析】连接OA,根据切线的性质求出∠OAP=90°,解直角三角形求出OA和∠AOB,求出△OAP的面积和扇形AOB的面积即可求出答案.【详解】解:连接OA,∵PA是⊙O的切线,∴∠OAP=90°,∵,∴∠AOP=60°,OP=2AO,由勾股定理得:,解得:AO=2,∴阴影部分的面积为,故答案为:.【点睛】本题考查的是切线性质,勾股定理,三角形面积和扇形面积,能够根据切线性质,求出三角形的三边是解题的关键.17、-1【分析】根据一元二次方程的定义,把x=1代入方程得关于的方程,然后解关于的方程即可.【详解】解:把x=1代入方程,得:1+k+3=0,解得:k=-1,故答案为:-1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.18、16:1【分析】由DE∥BC,证出△ADE∽△ABC,根据相似三角形的性质即可得到结论.【详解】∵DE∥BC,∴△ADE∽△ABC,∴S△ADE:S△ABC=()2=,故答案为16:1.三、解答题(共78分)19、(1)2000;(2)①售价是75元,②售价为85元,利润最大为3125元.【分析】(1)用每件利润乘以50件即可;
(2)每件售价降价x元,则每件利润为(100-60-x)元,销售量为(50+5x)件,它们的乘积为利润y,
①利用y=2625得到方程(100-60-x)(50+5x)=2625,然后解方程即可;
②由于y=(100-60-x)(50+5x),则可利用二次函数的性质确定最大利润值.【详解】解:(1)解:(1)该网店销售该商品原来一天可获利润为(100-60)×50=2000(元),
故答案为2000;(2)①解得或,又因尽量多增加销售量,故.售价是元.答:每件商品的售价应降价25元;②,当时,售价为元,利润最大为3125元.答:答:当该商品每件售价为85元时,该网店一天所获利润最大,最大利润值为3125元.【点睛】本题考查了二次函数的应用:在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.20、(1)补图见解析;(2)90,直径所对的圆周角是直角.【分析】(1)根据要求作出图形即可.
(2)根据线段的垂直平分线的性质以及圆周角定理证明即可.【详解】解:(1)如图线段CM即为所求.
证明:连接DA,DC,EA,EC,∵由作图可知DA=DC=EA=EC,∴DE是线段AC的垂直平分线.∴FA=FC.∴AC是⊙F的直径.∴∠AMC==90°(直径所对的圆周角是直角
),∴CM⊥AB.即CM就是AB边上的高线.故答案为:90°,直径所对的圆周角是直角.【点睛】本题考查作图-复杂作图,线段的垂直平分线的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21、(1);(2);(3)的坐标为或【分析】(1)先根据直线表达式求出A,C的坐标,再用待定系数法求出抛物线的表达式即可;(2)过点作于点,先求出点B的坐标,再根据面积之间的关系求出点E的坐标,然后利用余切的定义即可得出答案;(3)若与相似,分两种情况:若,;若时,,分情况进行讨论即可.【详解】(1)当时,,解得,∴当时,,∴把,两点的坐标代入,得,解得,.(2)过点作于点,当时,解得∴,,,,,.,.(3),,①若,,则点的纵坐标为2,把代入得或(舍去),.②若时,过点作轴于点,过点作交轴于点,,,,,设,则,,.∵,∴∴,,设,代入得(舍去)或者,.综上所述,的坐标为或.【点睛】本题主要考查相似三角形的判定及性质,待定系数法,三角函数,掌握相似三角形的判定方法和分情况讨论是解题的关键.22、(1)最多降价200元,才能使得利润不低于;(2)的值为1【分析】(1)设降价x元,才能使利润率不低于30%,根据售价﹣成本=利润,即可得出关于x的一元一次不等式,解之即可得出m的取值范围,取其最大值即可得出结论;(2)根据总利润=单套利润×销售数量,即可得出关于m的一元二次方程,解之取其正值即可得出结论.【详解】(1)设降价元,根据题意得:解得:答:最多降价200元,才能使得利润不低于.(2)根据题意得:整理得:解得:,(舍去)∴.答:的值为1.【点睛】本题考查了一元一次不等式的应用以及一元二次方程的应用,解题的关键是:(1)根据各数量间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出一元二次方程.23、(1)证明见解析;(2)与垂直,证明见解析.【分析】(1)由比例线段可知,我们需要证明△ADC∽△EGC,由两个角对应相等即可证得;
(2)由矩形的判定定理可知,四边形AFEG为矩形,根据矩形的性质及相似三角形的判定可得到△AFD∽△CGD,从而不难得到结论;【详解】证明:(1)在和中,∵,,∴.∴.解:(2)与垂直.证明如下:在四边形中,∵,∴四边形为矩形.∴.,∴.又∵为直角三角形,,∴,∴.∴.∵,∴.即.∴.【点睛】本题主要考查了相似三角形的判定和性质,全等三角形的判定和性质,等腰直角三角形的性质,同角的余角相等,判断出△ADF≌△CDG是解本题的关键.24、(1)1s或2s;(1)当t=或t=时,以P、C、Q为顶点的三角形与△ABC相似.【分析】(1)设P、Q同时出发,x秒钟后,AP=xcm,PC=(6﹣x)cm,CQ=1xcm,依据△PCQ的面积为8,由此等量关系列出方程求出符合题意的值.(1)分两种情况讨论,依据相似三角形对应边成比例列方程求解即可.【详解】(1)设xs后,可使△PCQ的面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湿巾生产设备操作规程
- 物流园区仓储服务管理制度
- 美发公共场所卫生的管理制度
- 环境工程期末考试题及答案
- 转运站岗位工安全生产职责及安全操作规程
- 成都实外西区2026高一数学分班考试真题含答案
- 译林版英语三年级下册期中复习专题11 匹配题专项训练(含答案)
- 轮滑场馆轮滑场地塑胶铺设技师(初级)考试试卷及答案
- 老年认知障碍数字疗法设计师岗位招聘考试试卷及答案
- 企业质量管理与合规性手册
- 云南省昆明市2026届高三三诊一模摸底诊断测试数学试卷(含答案)
- 古代文学八股文课件
- 正压式消防空气呼吸器培训
- 行测题库5000题及答案
- 2025年职高对口升学c语言试题及答案
- 设备部应急管理制度
- 软土路基换填施工方案
- 代收款三方协议
- 菏泽医专综评试题及答案
- 23G409先张法预应力混凝土管桩
- 员工关系管理 第3版 课件 第1-4章 绪论-员工解聘与裁员管理
评论
0/150
提交评论