版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
AutomaticControlTheory
SchoolofInformationandEngineering,ZZU1
TextBook:吴麟,自动控制原理(上、下),北京:清华大学出版社
OtherReferenceTeachingBooks:
JohnJ.D’Azzo.LinearControlSystemAnalysisandDesign(线性控制系统分析与设计,第4版).北京:清华大学出版社
RichardC.Dorf,RobertH.Bishop.ModernControlSystems(NinthEdition)(现代控制系统
第九版).北京:科学出版社胡寿松.自动控制原理(第四版).北京:科学出版社
2
Period:
Teachinghours:48hours
Exams:
Closed
exam.
Grading:
Homework20%,Finalexam80%3
Bytheendofthiscourse,thestudentshouldbeabletoFormulateamathematicalmodelofagivenphysicalsystemintimeandLaplacedomain.Identifythesystemorderandtype.Determinethesystem’stimeresponseduetoastep,rampandharmonicinput.4Evaluatethesystemstabilityusing:Routh-Hurwitzcriterion,rootlocusandNyquistdiagrams.ApplyclassicalcontrolmethodssuchasBodeplots,todesignclosedloopcontrolofthesystem.Applystatespacerepresentationofamultipleinputmultipleoutput(MIMO)system.DesignacontrollerandobserverforaMIMOsystem.5Chapter1Introduction
1.1AutomaticControl
1.2Open-loopControlSystemandClosed-loopControlSystem
1.3ConstituteofFeedbackControlSystem
1.4ClassifyofControlSystem
61.1AutomaticControl
1、AutomaticControlSystemspermeatelifeinalladvancedsocietiestoday.Technologicaldevelopmentshavemadeitpossibletotraveltothemoon;exploreouterspace.Andthesuccessfuloperationofspacevehicle;thespaceshuttle;spacestation;robot;industrycontrol,suchasthecontroloftemperature,pressure,fluid,lever,andsoon.
7
2、SomeTerminologies
A
controlsystem--------
A
controlsystem
isaninterconnectionofcomponentsformingasystemconfigurationthatwillprovideadesiredsystemresponse.
Referenceinput(Desiredoutput)------Excitationappliedtoacontrolsystemfromanexternalsource.Thereferencesignalproducedbythereferenceselector.Itistheactualsignalinputtocontrolsystem.8
Disturbanceinput-------Adisturbanceinputsignaltothesystemthathasanunwantedeffectonthesystemoutput.
Output(controlledvariable)--------Thequantitythatmustbemaintainedataprescribedvalue,i.e.,itmustfollowthecommandinputwithoutrespondingtodisturbanceinputs.
Feedback-----Theoutputofasystemthatisreturnedtomodifytheinput.9
Error-----Thedifferencebetweentheinputandtheoutput.
Open-loopcontrolsystem–Asysteminwhichtheoutputhasnoeffectupontheinputsignal.
Feedbackelement–Theunitprovidesthemeasurementvalueforfeedingbacktheoutputquantity,orafunctionoftheoutput,inordertocompareitwiththereference.10
Actuatingsignal(errorsignal)–Thesignalthatisthedifferencebetweenthereferenceinputandthefeedbacksignal.Itistheinputtothecontrolunitthatcausestheoutputtohavethedesiredvalue.
Negativefeedback–Theoutputsignalisfeedbacksothatitsubtractsfromtheinputsignal.
11
Closed-loopcontrolsystem–Asysteminwhichtheoutputhasaneffectupontheinputquantityinsuchamannerastomaintainthedesiredoutputvalue.Thatis,asystemthatusesameasurementoftheoutputandcomparesitwiththedesiredoutput.12
3、Controlsystemsareusedtoachieve:(1)increasedproductivity;(2)improvedperformanceofadeviceorsystem.Thecontrolofanindustrialprocess(manufacturing,production,andsoon)byautomaticratherthanmanualmeansisoftencalledautomation.Automationisusedtoimproveproductivityandobtainhigh-qualityproducts.13
4、Historyofautomaticcontrol
(1)Thefirstautomaticfeedbackcontro-llerusedinanindustrialprocessisgenerallyagreedtobeJamesWalt’sflyballgovernor,developedin1769forcontrollingthespeedofasteamengine.ShowninFig.1.1.
14Fig.1.1JamesWatt’sFlyballGovernor(1769)
Theall-mechanicaldevice,showninFig.1.1,measuredthespeedoftheoutputshaftandutilizedthemovementoftheflyballwithspeedtocontrolthevalveandthereforetheamountofsteamenteringtheengine.Asthespeedincreases,theballweightsriseandmoveawayfromtheshaftaxis,thusclosingthevalve.Theflyweightsrequirepowerfromtheenginetoturnandthereforecausethespeedmeasurementtobelessaccurate.
16
(2)J.C.Maxwellformulatedamathema-ticaltheoryrelatedtocontroltheoryusingadifferentialequationmodelofagovernor.(1868)
(3)Conventionalcontroltheoryiseffectivelyappliedtomanycontroldesignproblems,especiallytoSISOsystems.ItsmathematicalfoundationistheLaplacetransform.17
Routh1884;Hurwitz1895,algebrastabilitycriterion;
1932,Nyquist,steady-statefrequency-responsetechniques;
1927,BodeandNichols,frequency-responseanalysis;
1948,Evans,root-locustheory;
A.M.Lyapunov,stabilitytheory.18
(4)Moderncontroltheory(1960)isbasedonstatevariablemethods,forthedesignofmultiple-inputmultiple-output(MIMO)systems.Wiener(1949),Optimumdesign.Bellman(1957),Dynamicprogramming.Pontryagin(1962),Maxmumprinciple.Kalman(1960),ControllabilityandobservabilityKalmanandBuey(1961),Combinationofoptimalfilterandoptimalcontroller,LinearquadraticGaussian(LQG)control.19ClassicalcontroltheoryModerncontroltheory
SISO,linear,time-unvaryingsystem
MIMO,nonlinear,time-varyingsystem
Laplacetransform
matrix,vector,linearalgebra
Time,complexnumber,frequencydomain
Timedomain
output
state(5)Advancedcontroltheory(1980)Robusttheory.(1980s)Intelligentcontroltheory:ArtificialNeuralNetworks(ANNS);FuzzyControl(FC);ExpertSystem(ES).GA,GP,EC,Chaosetc.RETURN21
1.2Open-loopControlSystem
andClosed-loopControlSystem
1、Acontrolsystemisaninterconn-ectionofcomponentsformingasystemconfigurationthatwillprovideadesiredsystemresponse.
Acomponentofprocesstobecontrolledcanberepresentedbyablock,asshowninFig.1.2.
22(Stimulus)(Response)Cause(Desiredresponse)Effect(Actualresponse)23
2、Anopen-loopcontrolsystemutilizesacontrollerorcontrolactuatortoobtainthedesiredresponse,asshowninFig.1.3.
Thecontrolactioniscalculatedattheinitialtimet0andthenappliedtothephysicalsystemovertheentirecontrolhorizon[t0,tf]withoutmodification.Theoutputisnotobserved.
Anopen-loopcontrolsystemutilizesanactuatingdevicetocontroltheprocessdirectlywithoutusingfeedback.
Anotheropen-loopcontrolsystem:253、Themeasureoftheoutputiscalledthefeedbacksignal.Asimpleclosed-loopfeedbackcontrolsystemisshowninFig.1.4orFig.1.5.
Theadvantagesanddisadvantagesofopen-loopcontrolsystemandclosed-loopcontrolsystemTheexamplesofclosed-loopsystem:Example1:Example2:4.Complexcontrolsystem(idealcontrolmethod)
Combineopen-loopcontrolwithclosed-loopcontrolRETURN271.3ConstituteofFeedbackControlSystem
1、ConstituteoffeedbackcontrolsystemPlant+ControllerPlant(process):Thedevice,plantorsystemundercontrol.Measurementcomponent(Sensor);Comparisoncomponent;Amplifier;Actuatingdevice;Compensator;Controller28ComparedeviceCompensatoramplifieractuatorplantDisturbsignalInputdeviceReferenceinputControlsignalsensorMeasuredevicecontrollerstructureofgeneralcontrolsystem292、AnalysisofcontrolsystemStability:themostimportant;Performance:thetransientandsteady-stateresponseperformance;Robustness.30StabilityTransientperformancesteady-stateperformance3、“Control”
“Control”isthedesignandanalysisofsensors,actuators,andcomputationalsystems(analogordigital)tomodifythebehaviorofphysicalsystems.34Typicalsteps:SelectionofactuatorsandsensorsDevelopmentofadynamicmodelofthesystemtobecontrolledDesignofcontrolsystemsbasedonthesoundfundamentalprinciplesImplementationofthecontrollerusinganalogordigitalelectronics354、Designofcontrolsystem(1)Establishthesystemgoals.(2)Identifythevariablestocontrol;(3)Writethespecificationsforthevariables;(4)Establishthesystemconfigurationandidentifytheactuator;(5)Obtainamodeloftheprocess,theactuatorandthesensor;(6)Describeacontrollerandselectkeyparameterstobeadjusted;(7)Optimizetheparametersandanalyzetheperformance.36RETURN1.4ClassifyofControlSystem1.Theformofsystem’smathematicsmodelLinearsystem/Nonlinearsystem:thedynamicequationofsystemislineardifferentialequation/nonlineardifferentialequation.
Alinearsystemsatisfiestheprincipleofsuperposition.38Time-varyingsystemandtime-invariantsystem
Time-varyingsystemisasystemforwhichoneormoreoftheparametersofthesystemmayvaryasafunctionoftime.2.Referenceinputr(t)=constantr(t)=f(t)canbeknownthevaryrulef(t)cann’tbeknown“servo”393.Thetransfersignalsequence-timesystem
discrete-timesystem40Summary
Inordertodesignandimplementacontrolsystem,thefollowingessentialgenericelementsarerequired:1)KnowledgeofthedesiredvalueItisnecessarytoknowwhatitisyouaretryingtocontrol.412)KnowledgeoftheoutputoractualvalueThismustbemeasuredbyafeedbacksensor,againinaformsuitableforthecontrollertounderstand.Inadditional,thesensormusthavethenecessaryresolutionanddynamicresponse,sothatthemeasuredvaluehasaccuracyrequiredfromtheperformancespecification.3)KnowledgeofthecontrollingdeviceThecontrollermustbeabletoacceptmeasure-mentsofdesiredandactualvaluesandcomputeacontrolsignalinasuitableformtodriveanactuatingelement.424)KnowledgeoftheactuatingdeviceThisunitamplifierthecontrolsignalandprovidesthe“effort”tomovetheoutputoftheplanttowardsitsdesiredvalue.5)KnowledgeoftheplantMostcontrolstrategiesrequiressomeknowledgeofthestaticanddynamiccharacteristicoftheplant.Thesecanbeobtainedform
measurementsorformtheapplicationofFundamentalphysicallaws.orcombinationofboth.RETURN43
Aclosed-loopcontrolsystemusesameasurementoftheoutputandfeedbackofthesignaltocompareitwiththedesiredoutput(referenceofcommand).
Ageneralcontrolsystemcanberepresentedas:FeedbackelementActuatingsignal(errorsignal)
Anotherblockdiagramofageneralizedfeedbackcontrolsystem
1.5RETURN
open-loopcontrolsystemThemainadvantages:1)Muchsimpleandlessexpansivetoconstruct;2)Easytohavegoodstability;
Themaindisadvantages:Requiredetailedknowledgeofeachcomponentinordertodeterminetheinputvalueforarequiredoutput.
Theadvantagesanddisadvantagesofopen-loopcontrolsystemandclosed-loopcontrolsystem
closed-loopcontrolsystemThemainadvantages:
1)Havehigheraccuracy;
2)Notrequiredetailedknowledgeofeachcompo-nentoraccuratemodeloftheindividualcomponent;
3)Theabilitytorecoverfromexternal,unwanteddisturbances;
4)Reducedsensitivitytodisturbance;
Themaindisadvantages:
1)Complexandexpensivetoconstruct;
2)thelossofgain;
3)Quiteeasytobecomeunstable.
47Formostcases,theadvantagesfaroutweighthedisadvantages,andafeedbacksystemisutilized.Thereforeitisnecessarytoconsidertheadditionalcomplexityandtheproblemofstabilitywhendesigningacontrolsystem.RETURN
Example1:Awatertemperaturecontrolsystem
1.61.7Observe(throughsenses)Computeacontrolaction(throughbrain)andapplythecontrolAction(throughhands,feet,etc!)RETURNExample2:watertemperaturecontrolsystemwithaautomaticmethod1.8
Theblockdiagramofthewatertemperatureautomaticcontrolsystem
1.9
Comparemanualcontrolmethodtoautomaticcontrolmethod
Brain----Thermostat(Referenceinputordesiredoutput)Nervoussystem----DifferencingjunctionHand----Amplifier,MotorandWheeldrivers
EyesandSkinsensor---Temperaturesensor
MixerValve----MixerValveChapter2SystemModeling2.1
Mathematicalmodels2.2
Dynamicsequation2.3
Statespaceandstateequation2.4
Lineardifferentialequation2.5
Stateequation2.6
Transferfunction(matrix)2.7
Transferfunctionofclose-loopsystem2.8
Fundamentalparts2.9
Signalflowgraphs2.10
Impulseresponseandstepresponse2.11
Summary
Excises552.1
MathematicalModelsThefundamentalconceptofmathematicalmodelThefundamentalformsofmathematicalmodelsThemethodofmodelingThestepsofanalyzingandstudyingadynamicsystemInstructionalobjectivesAppendix:Propertyoflinearsystem56Ifthedynamicbehaviorofaphysicalsystemcanberepresentedbyanequation,orasetofequations,thisisreferredtoasthemathematicalmodelofthesystem.
Modelofsystem–therelationshipbetweenvariablesinsystem.
Whydowemuststudythemodelofcontrolsystem?
Quantitativemathematicalmodelsmustbeobtainedtounderstandandcontrolcomplexdynamicsystems.(analysisanddesign)1.Mathematicalmodel57Mathematicalexpression
DifferentialEquation:
(timedomainmodel)
areusedbecausethesystemsaredynamicinnature.
Impulsetransferfunction;state-spaceequation.Assumptionsareneededbecauseofthecomplexityofsystemsandtheignoranceofalltherelevantfactors..2.Thefundamentalformsofmathematicalmodel58Transferfunction(sdomainmodel)Laplacetransformisutilizedtosimplifythemethodofsolutionforlinearequations.
BlockdiagramandSignalflowdiagramResponseCurve(nonparametermodel)
frequencyresponsecurve;Bodediagram593.ThemethodofmodelingAnalyticalmethod:Itcanbeconstructedfromknowledgeofthephysicalcharacteristics
ofthesystemExperimentalmethodOthers.(NN)60Definethesystemanditscomponents.Formulatethemathematicmodelandlistthenecessaryassumptions.Writethedifferentialequationsdescribingthemodel.Solvetheequationsforthedesiredoutputvariables.Examinethesolutionsandtheassumptions.Ifnecessary,reanalyzeorredesignthesystem.4.Thestepsofanalyzingandstudyingadynamicsystem61
5.InstructionalobjectivesDevelopdynamicmodelsofphysicalcomponents.Derivationoftransferfunctions.Blockdiagramrepresentation.Blockdiagramrulesandsimplifytheblockdiagramtodeterminetheclosed-looptransferfunction.62Themathematicalmodelofasystemislinear,ifitobeystheprincipleofsuperposition(orprincipleofhomogeneity).Thisprincipleimpliesthatifasystemmodelhasresponsesy1(t)andy2(t)toanytwoinputsx1(t)andx2(t)respectively,thenthesystemresponsetothelinearcombinationoftheseinputs:ax1(t)+bx2(t)isgivenbythelinearcombinationoftheindividualoutputs,i.e.ay1(t)+by2(t).6.Appendix:Propertyoflinearsystem63Figure2.1MeaningofalinearsystemReturn642.2
Dynamicsequation
2.2.1
Derivationofthedifferentialequations2.2.2Linearapproximationsofnonlinearequation2.2.3Thedifferentialequationsofcomplexplants2.2.4Singlevariabledifferentialequation’sderivationoforiginalequations2.2.5Dynamicsequationofdiscrete-timesystemReturn652.2.1Derivationofthedifferentialequations
Inordertoanalyzethebehaviorofphysicalsystemsintimedomain,wewritethedifferentialequationsrepresentingthosesystems:
Electricalsystems(KVLand/orKCL,aelectricnetworkcanbemodeledasasetofnodalequationsusingKirchhoff’scurrentlaworKirchhoff’svoltagelaw).
66
Mechanicalsystems(Newton’slawsofmotion)Hydraulicsystems(Thermodynamic&Conservationofmatter)Thermalsystems(Heattransferlaws,Conservationofenergy)
Thestandarddifferentialequationis:outputinput67Thenumberofindependentenergystoragecomponentsinasystemdeterminetheorderofthatsystem.Annthorderdifferentialequationimpliesnindependentenergystoringcomponentsandyouneedninitialconditions.where
n≥m
foraphysicallyrealizablesystem.6869707172737475Example.2.1Displacementsystemofspring-mass-damper76
Example2.2:DifferentialequationofaR-L-Cnetwork.
uc(t)
istheoutputvoltageandu(t)
isthevoltagesource.LRCu(t)uc(t)++i(t)Figure2.2R-L-Cnetwork77TheequationoftheRLCnetworkshowninFig.2.2isobtainedbywritingtheKirchhoffvoltageequation,yielding
Therefore,solvingEq.(2)foriandsubstitutinginEq.(1),wehave78
arethetimeconstantsofthenetwork.
79AnalogousvariablesandsystemsRewritingthefollowingequationsintermsofdisplacementandvoltagerespectivelyItisobviousthattheyareequivalent.Displacementx(t)andvoltageuc(t)areequivalentvariables,usuallycalledanalogousvariables,andthesystemsareanalogous
systems.80Theconceptofanalogoussystemsisaveryusefulandpowerfultechniqueforsystemmodeling.Analogoussystemswithsimilarsolutionsexistforelectrical,mechanical,thermal,andfluidsystems.Theanalystcanextendthesolutionandtheunderstandingofonesystemtoallanalogoussystemswiththesamedescribingdifferentialequations.Analogoussystemshavethesameformsolution.81
Conclusion:
Differentphysicalsystemcangainsimilardifferentialequations.Thedifferentialequationsreflecttheessencecharacteristicsofsystem.82Example2.3Differentialequationofdcmotor.IaU(t)MΩML
EaJLoadΦdRa,Ladcmotorwiringdiagram83Thearmaturecurrentisrelatedtotheinputvoltageappliedtothearmatureas:
whereEa
isthebackelectromotive-forcevoltageproportionaltothemotorspeed,Uisinputvoltage,Iaisthearmaturecurrent,,La
isthemotorinductance,Raismotorresistance.84
Misthemotortorque,MListheloadtorque,Jistherotorinertia,Ωisthe(angular)velocityofthemotorbearings.
where
kdisdefinedasthemotorconstant.85Therearetwofirst-orderdifferentialequationsandtwoalgebraicequations,andsixvariablesU,Ea,,
Ia,M,ML,J,Ω.U
andML
aretheinputvariables,
whichleadtothemotor’smovement.IfweregardasΩbetheoutputvariable,othersbethemiddlevariables.Thedifferentialequationofthemotor-loadcombinationis86isthefieldtimeconstantofthearmature;isthetimeconstantofthemotorarmature;Generally,IfTa
isneglected,theequationisReturn872.2.2LinearApproximations
ofnonlinearequationAgreatmajorityofphysicalsystemsarelinearwithinsomerangeofthevariables.However,allsystemsultimatelybecomenonlinearasthevariablesareincreasedwithoutlimit.Asystemisdefinedaslinearintermsofthesystemexcitationandresponse.Keywords:
operatingpoint;small-signalconditions;Taylorseries;continuous;linearapproximation88Therelationshipoftwovariableswrittenas,wheref(x)indicatesyisafunctionofx.Thenormaloperatingpointisdesignatedbyx0.Becausethecurve(function)iscontinuousovertherangeofinterest,aTaylorseriesexpansionabouttheoperatingpointmaybeutilized.Thenwehave89Theslopeattheoperatingpoint,isagoodapproximationtothecurveoverasmallrangeof(x-x0)(smallperturbation),thedeviationfromtheoperatingpoint.Then,asareasonableapproximation,theequationcanberewrittenasthelinearequationwheremistheslopeattheoperatingpoint.9091Example2.4NonlineardifferentialequationOperatingpoint:(T0,u0)Smallchange:92Linearapproximationofdifferentialequation93Ifthedependentvariableydependsuponseveralexcitationvariables,thenthefunctionalrelationshipiswrittenas
TheTaylorseriesexpansionabouttheoperatingpointx0(x10,x20,…,xn0)isusefulforalinearapproximationtothenonlinearfunction.Whenthehigher-ordertermsareneglected,thelinearapproximationiswrittenasReturn942.2.3Thedifferentialequations
ofcomplexplantsGenerallysteps:
(1)ConfirmtheI/Ovariablesofsystemandeverycomponents;(2)Writethedynamicsequationsofeverycomponentsusingphysicallaws;(3)Checkupthenumberofequationsanddecideifitisequaltothenumberofunknownvariablesornot.(4)Expurgatetheinsidevariablesfromthesetofthedifferentialequations,andchangetothestandardform.95
Example2.5Servo-system
Workprinciple:Twosamechangeableresistoraresuppliedbythesamedcelectricalsource;Thearmofresistor1canrotatebyhandle3.Supposingψ、φrepresentthepositionofthearmofthetworesistorsrespectively.Ifψisnotequaltoφ,thentheerrorsignalup
isformed,whichbeamplifiedby4,finallythefieldcurrentIfofthedcdynamotor’sfieldwindingisformed,whichleadtothevoltage’schangeofdynamotor5.Sothedcmotor8rotates,whichleadtotheload10rotatestoobythegear9.Sothearmofresistor2startstomove,asfarasψ=φ.96up97Writeoutdynamicsequationsofeverycomponents:(1)thesetofchangeableresistances:Inputs:ψ,φ;output:up
(1)Wherekdisthecoefficientoftheresistance.(2)amplifier:Input:up,output:If
;
or(2)
wherekaisthemagnifiedmultipleofvoltage;Rfisthesumresistanceofoutputcircuit;Lfisinductanceoffieldwinding6;Tf=Lf/Rf
isthetimeconstantoffieldcircuit.98(3)dynamotor-motor:Input:If
;output:Ω.Fromexample2.2:
(3)(4)driveinstitution:Input:Ω;output:φ.
(4)
wherektisthedriveratioofthedriveinstitution.99Equation(1)~(4)arethemathematicsmodelsoftheservo-system.Itconsistsofonesecond-orderdifferentialequation,twofirst-orderdifferentialequationsandonealgebraicequation.Therearesixvariablessuchasψ、φ、
up、
If
、
ML、Ω.Tothewholesystem,theinputsareψand
ML,othersaretheinsidedependentvariables,andthenumberisequaltothenumberoftheequations.Return1002.2.4
Scalardifferentialequation’s
derivationoforiginalequations
Return(1)ConfirmtheI/Ovariablesofsystemandeverycomponents;(2)Writethedynamicsequationsofeverycomponentsusingphysicallaws;(3)Checkupthenumberofequationsanddecideifitisequaltothenumberofunknownvariablesornot.(4)Expurgatetheinsidevariablesfromthesetofthedifferentialequations,andchangetothestandardform.1012.2.5
Dynamicsequation
ofdiscrete-timesystem
Thediscrete-timeapproximationisbasedonthedivisionofthetimeaxisintosufficientlysmalltimeincrements.Thevaluesoftheinput/outputareevaluatedatthesuccessivetimeintervals,thatis,t=0,T,2T,…,whereTistheincrementoftime:=T.IfthetimeincrementTissufficientlysmallcomparedwiththetimeconstantsofthesystem,thediscrete-timeserieswillbereasonablyaccurate.102Differenceequation:reflecttherelationshipoftheinputandoutputseriesattheeverysamplepointsofthediscretetimesystem.UsingTdenotesthespacebetweentwosamplingtime.
Differenceequationdescribesthemovementoftheseplants.Detailsinchapternine.103Generalbackwarddifferenceequationoflineartime-invariantsystem:ortheforwarddifferenceequation:Return1042.3Statespaceandstateequation
2.3.1Statevectorandstatespace
2.3.2Stateequationandoutputequation
2.3.3Stateequation’sderivationoforiginalequationsReturn1052.3.1StatevectorandstatespaceDynamicsystem
—asystemthatcanstoreinputinformation.Example:xF(t)mv(t)xm:
themass;a(t):
theaccelerationofmattimet;F(t):
theforceappliedtomfortime
[t0,t];v(t):thevelocityof
m
attime
t;x(t):thedisplacement
of
m.106AccordingtoNewton‘slaw,wehave:Ifwechoosex(t)andv(t)astwostatevariables,thenWherex(t0)andv(t0)aretheinitialstatesvalue.x(t0-),v(t0-)
F(t)(t>t0)_determinex(t)andv(t)candescribethebehaviorofsystemcompletely.107
State—theminimumsetofvariables(calledthestatevariables)whichatsomeinitialtimet0,togetherwiththeinputssignalu(t)fortime,sufficestodeterminethefuturebehaviorofthesystemfortime.Foradynamicsystem,thestateofasystemisdescribedintermsofasetofstatevariables[x1(t),x2(t),…,xn(t)].Example:ExpressthestateofsystemattimetExpresstheinitialstateofsystem108Statevariables—arethosevariablesthatdeterminethefuturebehaviorofasystemwhenthepresentstateofthesystemandtheexcitationsignalsareknown.
Example:
displacementx(t)andvelocity
v(t)aretwostatevariables,anyoneofthemcannotdescribethemasssystemcompletely.109
Statevector—Vector
whichconsistsofnstatevariablesthatdescribedentirelythedynamicsactionofaknownsystem.thatisdescribedas
or
Example:arestatevectorofmasssystem110Statespaceisndimensionsspacewhichtakesx1,x2…xn
as
coordinate.Themannerinwhichthestatevariableschangeasafunctionoftimemaybethoughtofasatrajectoryinndimensionalspace,calledStatespace.0xvExample:twodimensionstatespace
111
Example:
Laplace
then:1)ift≥0,u(t)isknown,andtheinitialcondition
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 佳木斯食品安全培训中心课件
- 余杭区安全生产培训收费课件
- 翻译硕士基础题库及答案
- 法宣在线题目及答案
- 二建施工管理历年真题及答案
- 小学五年级语文上册神话学习英雄形象分析课件
- 2026年三亚大小洞天发展有限公司招聘经理备考题库及参考答案详解
- 内蒙古威信保安押运服务有限责任公司2025年度公开招聘备考题库及答案详解(新)
- 2026年武汉市荣军优抚医院招聘25人备考题库及答案详解(夺冠系列)
- 2026年闵行区人才局公开选聘外聘法律顾问的备考题库及完整答案详解
- 我的家乡四川南充
- 监控中心工作总结
- 2021医院感控持续改进手册(护士版)
- GB/T 9799-2024金属及其他无机覆盖层钢铁上经过处理的锌电镀层
- 工程伦理与管理智慧树知到期末考试答案章节答案2024年山东大学
- 市场拓展与销售渠道拓展方案
- 工地大门施工协议书
- GB/T 15651.7-2024半导体器件第5-7部分:光电子器件光电二极管和光电晶体管
- 《物联网工程项目管理》课程标准
- 物业公司财务预算管理制度
- 劳动合同英文版
评论
0/150
提交评论