数学(文):课时作业12 函数模型及应用 作业_第1页
数学(文):课时作业12 函数模型及应用 作业_第2页
数学(文):课时作业12 函数模型及应用 作业_第3页
数学(文):课时作业12 函数模型及应用 作业_第4页
数学(文):课时作业12 函数模型及应用 作业_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课时作业12函数模型及应用一、选择题1.下表显示出函数值y随自变量x变化的一组数据,由此判断它最可能的函数模型是()x45678910y15171921232527A.一次函数模型 B.二次函数模型C.指数函数模型 D.对数函数模型解析:由表中数据知x,y满足关系y=13+2(x-3).故为一次函数模型.答案:A2.某文具店出售羽毛球拍和羽毛球,球拍每副定价20元,羽毛球每个定价5元,该店制定了两种优惠方法:①买一副球拍赠送一个羽毛球;②按总价的92%付款.现某人计划购买4副球拍和30个羽毛球,两种方法中,更省钱的一种是()A.不能确定 B.①②同样省钱C.②省钱 D.①省钱解析:方法①用款为4×20+26×5=80+130=210(元)方法②用款为(4×20+30×5)×92%=211.6(元)因为210<211.6,故方法①省钱.答案:D3.一个人以6m/s的速度去追停在交通灯前的汽车,当他离汽车25m时,交通灯由红变绿,汽车以1m/s2的加速度匀加速开走,那么()A.人可在7s内追上汽车B.人可在10s内追上汽车C.人追不上汽车,其间距最少为5mD.人追不上汽车,其间距最少为7m解析:设汽车经过t秒行驶的路程为s米,则s=eq\f(1,2)t2,车与人的间距d=(s+25)-6t=eq\f(1,2)t2-6t+25=eq\f(1,2)(t-6)2+7,当t=6时,d取得最小值为7.答案:D4.某市生产总值连续两年持续增加.第一年的增长率为p,第二年的增长率为q,则该市这两年生产总值的年平均增长率为()A.eq\f(p+q,2) B.eq\f(p+1q+1-1,2)C.eq\r(pq) D.eq\r(p+1q+1)-1解析:设第一年年初生产总值为1,则这两年的生产总值为(p+1)(q+1).设这两年生产总值的年平均增长率为x,则(1+x)2=(p+1)(q+1),解得x=eq\r(p+1q+1)-1,故选D.答案:D5.(2018·石家庄质量检测(二))李冶(1192—1279),真定栾城(今河北省石家庄市)人,金元时期的数学家、诗人,晚年在封龙山隐居讲学,数学著作多部,其中《益古演段》主要研究平面图形问题:求圆的直径、正方形的边长等.其中一问:现有正方形方田一块,内部有一个圆形水池,其中水池的边缘与方田四边之间的面积为13.75亩,若方田的四边到水池的最近距离均为二十步,则圆池直径和方田的边长分别是(注:240平方步为1亩,圆周率按3近似计算)()A.10步,50步 B.20步,60步C.30步,70步 D.40步,80步解析:设圆池的半径为r步,则方田的边长为(2r+40)步,由题意,得(2r+40)2-3r2=13.75×240,解得r=10或r=-170(舍),所以圆池的直径为20步,方田的边长为60步,故选B.答案:B6.放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M(单位:太贝克)与时间t(单位:年)满足函数关系:M(t)=M02eq\s\up15(-eq\f(t,30)),其中M0为t=0时铯137的含量.已知t=30时,铯137含量的变化率是-10ln2(太贝克/年),则M(60)=()A.5太贝克 B.75ln2太贝克C.150ln2太贝克 D.150太贝克解析:由题意M′(t)=M02eq\s\up15(-eq\f(t,30))eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,30)))ln2,M′(30)=M02-1×eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,30)))ln2=-10ln2,∴M0=600,∴M(60)=600×2-2=150.故选D.答案:D二、填空题7.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是______元.解析:设进货价为a元,由题意知132×(1-10%)-a=10%·a,解得a=108.答案:1088.某人根据经验绘制了2017年春节前后,从1月21日至2月8日自己种植的西红柿的销售量y(千克)随时间x(天)变化的函数图象,如图所示,则此人在1月26日大约卖出了西红柿________千克.解析:前10天满足一次函数关系,设为y=kx+b,将点(1,10)和点(10,30)代入函数解析式得eq\b\lc\{\rc\(\a\vs4\al\co1(10=k+b,,30=10k+b,))解得k=eq\f(20,9),b=eq\f(70,9),所以y=eq\f(20,9)x+eq\f(70,9),则当x=6时,y=eq\f(190,9).答案:eq\f(190,9)9.已知某驾驶员喝了m升酒后,血液中酒精的含量f(x)(毫克/毫升)随时间x(小时)变化的规律近似满足表达式f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(5x-2,0≤x≤1,,\f(3,5)·\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))x,x>1,))《酒后驾车与醉酒驾车的标准及相应的处罚》规定:驾驶员血液中酒精含量应不超过0.02毫克/毫升.则此驾驶员至少要过________小时后才能开车.(精确到1小时)解析:驾驶员醉酒1小时血液中酒精含量为5-1=0.2,要使酒精含量≤0.02毫克/毫升,则eq\f(3,5)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))x≤0.02,∴x≥log330=1+log310>1+log39=3,故至少要4个小时后才能开车.答案:4三、解答题10.某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为y=eq\f(x2,5)-48x+8000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?解:(1)每吨平均成本为eq\f(y,x)(万元).则eq\f(y,x)=eq\f(x,5)+eq\f(8000,x)-48≥2eq\r(\f(x,5)·\f(8000,x))-48=32,当且仅当eq\f(x,5)=eq\f(8000,x),即x=200时取等号.所以年产量为200吨时,每吨产品的平均成本最低,为32万元.(2)设年获得总利润为R(x)万元,则R(x)=40x-y=40x-eq\f(x2,5)+48x-8000=-eq\f(x2,5)+88x-8000=-eq\f(1,5)(x-220)2+1680(0≤x≤210).因为R(x)在[0,210]上是增函数,所以x=210时,R(x)有最大值,为-eq\f(1,5)(210-220)2+1680=1660.所以年产量为210吨时,可获得最大利润1660万元.11.某种出口产品的关税税率为t,市场价格x(单位:千元)与市场供应量p(单位:万件)之间近似满足关系式:p=2(1-kt)(x-b)2,其中k,b均为常数.当关税税率t=75%时,若市场价格为5千元,则市场供应量为1万件;若市场价格为7千元,则市场供应量约为2万件.(1)试确定k,b的值.(2)市场需求量q(单位:万件)与市场价格x近似满足关系式:q=2-x,当p=q时,市场价格称为市场平衡价格,当市场平衡价格不超过4千元时,试确定关税税率的最大值.解:(1)由已知eq\b\lc\{\rc\(\a\vs4\al\co1(1=21-0.75k5-b2,,2=21-0.75k7-b2,))⇒eq\b\lc\{\rc\(\a\vs4\al\co1(1-0.75k5-b2=0,,1-0.75k7-b2=1.))解得b=5,k=1.(2)当p=q时,2(1-t)(x-5)2=2-x,所以(1-t)(x-5)2=-x⇒t=1+eq\f(x,x-52)=1+eq\f(1,x+\f(25,x)-10).而f(x)=x+eq\f(25,x)在(0,4]上单调递减,所以当x=4时,f(x)有最小值eq\f(41,4),故当x=4时,关税税率的最大值为500%.1.(2017·新课标全国卷Ⅲ)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳解析:通过题图可知A不正确,并不是逐月增加,但是每一年是递增的,从图观察C是正确的,D也正确,1~6月比较平稳,7~12月波动比较大.答案:A2.在翼装飞行世界锦标赛中,某翼人空中高速飞行,如图反映了他从某时刻开始的15分钟内的速度v(x)与时间x的关系,若定义“速度差函数”u(x)为时间段[0,x]内的最大速度与最小速度的差,则u(x)的图象是()解析:由题意可得,当x∈[0,6]时,翼人做匀加速运动,v(x)=80+eq\f(40,3)x,“速度差函数”u(x)=eq\f(40,3)x.当x∈[6,10]时,翼人做匀减速运动,速度v(x)从160开始下降,一直降到80,u(x)=160-80=80.当x∈[10,12]时,翼人做匀减速运动,v(x)从80开始下降,v(x)=180-10x,u(x)=160-(180-10x)=10x-20.当x∈[12,15]时,翼人做匀加速运动,“速度差函数”u(x)=160-60=100,结合所给的图象,故选D.答案:D3.(2017·北京卷)三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点Ai的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点Bi的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.①记Qi为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是________;②记pi为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是________.解析:①设线段AiBi的中点为Ci(xi,yi),则Qi=2yi(i=1,2,3).因此只需比较C1,C2,C3三个点纵坐标的大小即可.不难发现y1最大,所以Q1最大.②由题意,知pi=eq\f(yi,xi)(i=1,2,3).故只需比较三条直线OC1,OC2,OC3的斜率即可,发现p2最大.答案:①Q1②p24.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超过4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.(1)写出每户每月用水量x(吨)与支付费用y(元)的函数关系;(2)该地一家庭记录了去年12个月的月用水量(x∈N*)如下表:月用水量x(吨)34567频数13332请你计算该家庭去年支付水费的月平均费用(精确到1元);(3)今年干旱形势仍然严峻,该地政府号召市民节约用水,如果每个月水费不超过12元的家庭称为“节约用水家庭”,随机抽取了该地100户的月用水量作出如下统计表:月用水量x(吨)1234567频数10201616151310据此估计该地“节约用水家庭”的比例.解:(1)y关于x的函数关系式为y=eq\b\

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论