新教材浙教版八年级下册初中数学全册教案_第1页
新教材浙教版八年级下册初中数学全册教案_第2页
新教材浙教版八年级下册初中数学全册教案_第3页
新教材浙教版八年级下册初中数学全册教案_第4页
新教材浙教版八年级下册初中数学全册教案_第5页
已阅读5页,还剩57页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新教材浙教版八年级下册初中数学全册教案(教学设计)

【精品全册资料精心整理汇编尽力让你满意】

科目:【数学】

适用版本:【新教材浙教版】

适用范围:【教师教学】

精品文档精心整理

第1章二次根式

1.1二次根式

【教学目标】

知识与技能

1.理解二次根式的概念。

2.使学生掌握用简单的一元一次不等式解决二次根式中字母的取值范围.

过程与方法

1.经历探究二次根式意义的过程,并能观察思考得出二次根式的特点。

2.通过探究,进一步发展观察、归纳、概括等能力。

3.培养与提高灵活运用知识的能力、准确计算能力以及语言表达能力。

情感态度与价值观

1.通过探究二次根式,让学生获得成功的体验,锻炼克服困难的意志,建立自信心。

2.通过探究,鼓励学生敢于发表自己的观点,尊重与理解他人的见解,从交流中获益。

3.通过对二次根式特点的归纳,提高学生的逻辑思维能力.

教学重难点

重点:二次根式的概念和二次根式有意义的条件。

难点:确定较复杂的二次根式中字母的取值范围。

【教学过程】

知识回顾

求一求:(1)3的平方根是;

(2)3的算术平方根是;

(3)日有意义吗?为什么?J5呢?

归纳:①一个正数有一个平方根,负数;

②一个非负数a的算术平方根可以表示为—。

情景导入

根据图1.1-1的直角三角形、正方形和圆的条件,完成以下填空:

图1.1-1

精品文档可编辑的精品文档

精品文档精心整理

直角三角形的斜边长是:正方形的边长是;圆的半径是

学生写出表示算术平方根的式子。问:你认为所得的各代数式的共同特点是什么?

学生通过观察,感知二次根式的特征,从而引出课题。

探究新知

1.二次根式的概念

引导学生概括二次根式的概念:像Vfl2+4,7^3,二这样表示算术平方根的代

71

数式叫做二次根式。

2.深化二次根式的概念:

①提问:H,G+1是不是二次根式?呢?

②议一议:二次根式表示什么意义?此算术平方根的被开方数是什么?被开

方数必须满足什么条件的二次根式才有意义?其中字母。需满足什么条件?为什么?

经学生讨论后,让学生回答,并让其他学生点评。

③教师总结:强调二次根式根号内字母的取值范围必须满足被开方数大于或等于0。

④巩固练习一:下列式子,哪些是二次根式?

V5,J3x,y/—14,

3.讲解例题

例1求下列二次根式中字母a的取值范围:

(1)Ja+1;(2)J3—4a;(3)J-x.

教师提问,学生回答,教师板书解题过程。

①被开方数需满足什么?

②由此可得怎样的不等式?

例2求下列代数式中字母x的取值范围:

-2

(2)⑶

2—3/2-x

可以转化为解怎样的不等式?

交流归纳,总结:二次根式中字母的取值范围的基本依据是——被开方数不小于0,当

分母中有字母时,要保证分母不为0。

巩固练习二:求下列二次根式中字母x的取值范围。

,J—3%,V1—2x,J-(x-1)2

精品文档可编辑的精品文档

精品文档精心整理

例3当44时,求二次根式Jl-2x的值。

教法:(1)引导学生回顾代数式的值的概念和如何求代数式的值。

(2)指出二次根式也是一种代数式,求二次根式的值与求其他代数式的值的方法相同.

巩固练习三:当x分别取下列值时,求二次根式j4—2x的值。

x=0;x=\;x=-l<>

例4一艘轮船先向东北方向航行2小时,再向西北方向航行f小时,船的航速是

25千米/时。

(1)用关于,的代数式表示船离出发地的距离。

(2)求当仁3时,船离出发地多少千米?(精确到0.01千米)

教法:引导学生画图,让学生注重数形结合思想。

知识梳理

由学生总结,谈一谈:本节课你有什么收获或困惑?教师适当提问并补充。

一个概念:二次根式五'(a20)。

两类题型:1.求代数式所含字母的取值范围。

2.求二次根式的值。

三点注意:1.二次根式的双重非负性右>0,a>0«

2.分母不能为0。

3.转化思想。1.2二次根式的性质

教学目标

1.经历二次根式的性质的探索过程,体验归纳、猜想的思想方法.

2.会运用二次根式的性质进行有关计算.

教学重难点

重点:理解二次根式的性质.

难点:运用二次根式的性质进行有关计算.

教学过程

1.引入新课

知识回顾:

动动脑筋:你能把一张三边长分别为石,石,亚的三角形纸片放入4x4方格内,

使它的三个顶点都在方格的顶点上吗?

精品文档可编辑的精品文档

精品文档精心整理

板书课题

1.正方形的边长是右.

参考图1-2,完成以下填空:

你发现什么规律?

二次根式的性质1:(Va)'=«(a>0).

2.填空:

V?~_______>|2|=;

7^5?=,|-5|=;

=_______,|o|=.

比较左右两边的式子,议一议:病与同有什么关系?当生0时,;当。

<0时,病=.

二次根式的性质2:值=同=「(:之?:

'\-a{a<0).

例1计算:

(1)J(T0)2-(回2;

(2)[夜-"(-2)2].夜+2-.

例2计算:

3.我们继续来探究二次根式的其他性质:填空(可用计算器计算)

精品文档可编辑的精品文档

精品文档精心整理

J4>9=>V4xM=;

J4>5=x逐=;

Viooxo.oi=,ViooxV(LOT=

比较左右两边的等式,你发现了什么?你能用字母表示你发现的规律吗?

1.积的算术平方根的性质:

积的算术平方根等于积中各因式的算术平方根的积(各因式必须是非负数),即

•fab=4ax-Jb[a>0,b>0).

2.商的算术平方根的性质:

商的算术平方根等于被除式的算术平方根除以除式的算术平方根(被除式必须是非负

数,除式必须是正数),即(a>0,h>0).

例3化简:

(1)7121x225;⑵“2x7;(3)J|;(4)R

像J7,石,旧,右,后这样,在根号内不含分母,不含开得尽方的因数或因式,这

样的二次根式我们就说它是最简二次根式.

例4化简:

18).(-24);⑵小脸;(3)70.001x0.5.

3.课堂小结

1二次根式的性质:⑴(炀2=皿*0)

⑵行用

[-4(Q<0).

“)>0,/?>0),

精品文档可编辑的精品文档

精品文档精心整理

(4).^(a>0,b>0).

2.最简二次根式的特点:根号内不含分母,不含开得尽方的因数或因式.

精品文档可编辑的精品文档

精品文档精心整理

1.3二次根式的运算

课时1二次根式的乘除运算

【教学目标】

1.了解二次根式的运算法则是由二次根式的性质得到的.

2.会进行简单的二次根式的乘除运算.

【教学重难点】

重点:二次根式的运算法则.

难点:将二次根式的运算结果化成最简二次根式.

【教学过程】

一、复习引入

1.二次根式有哪些性质?

2.化简下列二次根式:

疵,3g'K,a•

3.计算:VoJxVlO,

V3

教师根据二次根式的性质公式引导学生思考二次根式的乘除运算,进而引入新课.

二、探究新知

1.例题教学

例1计算:(1)V2xy/6;(2)./l—xyl——;1』.

V3V10V1.3xl09

分析:(2)中一个二次根式的被开方数是带分数要先化成假分数,再进行运算.

解:(1)V2x^6=42x6=>/\2=2V3.

2,二次根式乘除运算的一般步骤:

(1)运用法则,转化为根号内的实数运算;

精品文档可编辑的精品文档

精品文档精心整理

(2)完成根号内相乘、相除运算;

(3)化简二次根式.

3.教师引导学生学习教材P13例2.

二、巩固练习

教材P14课内练习第3题,学生完成后,出示答案.

三、课堂小结

(1)二次根式的乘除运算法则:

y[axy/b=y[ab[a>Q,b>0);

()

忑Ya>0,b>0.

(2)注意:二次根式的乘除运算中被开方数是带分数要先化成假分数再进行运算.

二次根式运算的结果,如果能够化简,那么应把它化简为最简二次根式.

(3)运用二次根式解决实际问题.

四、布置作业

教材P14作业题第1,2,4,6题.

精品文档可编辑的精品文档

精品文档精心整理

课时2二次根式的四则混合运算

【教学目标】

1.会进行简单的二次根式的四则混合运算.

2.通过整式运算的某些法则在二次根式四则运算中的运用,体验迁移、化归等数学思

想.

【教学重难点】

重点:二次根式的四则混合运算.

难点:二次根式的四则混合运算的运算顺序.

【教学过程】

一、课题引入

计算2a——a——a

33

并回答问题:

(1)你是运用什么知识解决上面的计算?(学生回答后,教师板书解题过程)

c12小12、

2a--a--a=(2------)a=a

3333

2V2--V2--V2=(2----)V2=V2

(2)上题中的〃若用'2替代,即:3333你

认为运算是否正确?

K教师归纳』我们发现整式中的合并同类项法则在二次根式的运算中也适用.

猜想:那么整式中的其他运算法则或运算律或运算顺序是否也适用于二次根式的运

算呢?(教师作肯定回答后)导出课题:二次根式的加减运算.

二、探究新知

1.二次根式的加减运算

教材P15例3化简:

启发提问:⑴这是一道二次根式的什么运算?能否适用合并同类项的方法进行合并?

⑵上面的二次根式是否还可以化简?请同学们试一下,再回答问题⑴(最

后教师板书解题过程)

精品文档可编辑的精品文档

精品文档精心整理

归纳:二次根式加减运算之前,应先化简二次根式,再把所含二次根式完全相同的项合

并成一项.

2.练一练:化简:

3.二次根式的四则混合运算

例计算:

⑴J27—3A/6x2V2,

(:-3扬•新

⑵V8.

(3)(质-同+6.

启发提问:⑴第⑴题有哪些运算?运算顺序是什么?系数-3和2如何处理?

⑵第⑵⑶题可否用运算律?用到哪些运算律?

⑶第⑵⑶题能否先做括号内的?(教师板书解题过程)

学以致用:计算:

—V24-2-73xV2V3(l—V15^)—3./—

(1)2;⑵2

教师带领学生一起学习教材例题.

教材P15例5计算:

(1)(2V2-373)(373+2V2),⑵(2-五)(3+2后).

提问:(1)这两题的计算与整式中的什么运算类似?

⑵第⑴题又有什么特征?(教师板书解题过程)

三、巩固练习

计算:

(1)(1+V2)(2-V2);(2)(3V5-5V2);

四、课堂小结

1.二次根式的加减运算:先化简二次根式,再合并同类二次根式.

2.二次根式的四则混合运算顺序:先算乘除,再算加减,有括号的先算括号里面的.

精品文档可编辑的精品文档

精品文档精心整理

五、布置作业

教材P16作业题.

课时3二次根式及其运算的应用

【教学目标】

1.会运用二次根式解决简单的实际问题.

2.进一步体验二次根式及其运算的实际意义和应用价值.

【教学重难点】

重难点:二次根式及其运算的实际应用.

【教学过程】

一、课题引入

二次根式的知识在实际生活中有广泛的用途.

h

如图,我们规定斜坡的铅直高h与水平长度/的比叫做坡比(或坡度),即坡比1=

C

已知斜坡的坡比为3:4,且其高CE=2dm,宽AB=1dm.一只蚂蚁DT

h

从A点爬到C点,最短路程是多少?±

E

说明:设计本题有以下目的:

⑴介绍预备知识“坡比”;

⑵激发学生的学习兴趣;

⑶会用二次根式表示未知量.在RtABCE中,BCRBE2+CE2.

二、应用举例

K例(教材P17例6)如图,扶梯AB的坡比为1:0.8,滑梯CD的坡比为1:1.6,AE=|

m,BC^CD.一男孩从扶梯走到滑梯的顶部,然后从滑梯滑下,经过的总路程是多少米(要

求先化简,再取近似值,结果精确到0.01m)?

精品文档可编辑的精品文档

精品文档精心整理

3

分析:由题意知BE:AE=1:0.8,AE=^m,所以BE=-2-=—(m).因为BE=CF="m,

20.888

CF:FD=1:1.6,所以FD=1.6x—=3(m).由勾股定理,得

8

AB=ylAE2+BE2=^(1)2+(y)2=率(m),

22

CD=VCF+FD=庐)2+32=三昼(„1).因为BC=|CD,所以Bcgx空羽=亚区m).所

V8822816

以这个男孩经过的总路程约为AB+BC+CD=^+噜+噜=吗巫RTm).

说明:以上的分析过程显示了求解问题的格式化的程序,学生必须养成这样的思维习

惯.

练习一:(教材P19作业题T3)

K例22(教材P17例7)如图㈠是一张等腰直角三角形彩色纸,AC=BC=40cm.将斜边上

的高CD四等分,然后截出3张宽度相等的长方形纸条.

⑴分别求出3张长方形纸条的长度.

⑵若用这些纸条为一幅正方形美术作品镶边(纸条不重叠),如图㈡,正方形美术作品的

面积为多少平方厘米?

C

ADB

图㈠图㈡

分析:⑴①如图㈠,从已知能得到什么?

在RtAABC中,CDJ_AB,AC=BC=40cm,易求得AB和CD的长(让学生求),则

CE3=E3F3=F3G3=G3D=ICD,纸条的宽度可求.

②怎样求纸条的长度?

纸条的总长度=E|E2+F|F2+G|G2,怎样求E|E2(让学生想一想)?F|F2和G1G2呢?

由等腰三角形的性质知E1E2=2CE3,FE=2CF3,GIG2=2CG3.

⑵如图㈡,由⑴得纸条的总长度为6072cm,它被四等分,则AC=15啦cm,它们所围成的

正方形的边长AB=AC-BC,则这幅正方形美术作品的面积可求出.

三、布置作业

精品文档可编辑的精品文档

精品文档精心整理

教材P19作业题第2,4,5题.

精品文档可编辑的精品文档

精品文档精心整理

2.1一元二次方程

教学内容

一元二次方程的概念及一元二次方程的一般式及有关概念.

教学目标

了解一元二次方程的概念;一般式以及其派生的概念;应用一元二次方

程的概念解决一些简单题目.

1.通过设置问题,建立数学模型,模仿一元一次方程的概念给一元二次方程下定义.

2.一元二次方程的一般形式及其有关概念.

3.解决一些概念性的题目.

4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.

重难点

重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决

问题.

难点:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到

一元二次方程的概念.

教学过程

一、情景导入

学生活动:列方程.

问题(1)古算趣题:“执竿进屋”

笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭.

有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足.

借问竿长多少数,谁人算出我佩服.

如果假设门的高为x尺,那么这个门的宽为尺,长为尺.

根据题意,得.

整理、化简,得.

二、探索新知

学生活动:请口答下面问题.

(1)上面方程整理后含有几个未知数?

(2)按照整式中的多项式的规定,它的最高次数是几次?

(3)有等号吗?还是与多项式一样只有式子?

老师点评:(1)只含一个未知数x;(2)它的最高次数是2;(3)有等号,是方程.

因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数

是2(二次)的方程,叫做一元二次方程.

一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式以2+6x+c=0

精品文档可编辑的精品文档

精品文档精心整理

3W0).这种形式叫做一元二次方程的一般形式.

一个一元二次方程经过整理化成以2+bx+c=0(aW0)后,其中ox2是二次项,a是二次项系

数;法是一次项,b是一次项系数;c是常数项.

例1把下列方程化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和

常数项.

(1)9必=54;⑵(2㈤(3x+4)=3.

例2已知一元二次方程2/+区+c=0的两个根分别为为=2和X2=-3,求这个方程.

2

三、巩固练习

判断下列方程是否为一元二次方程?

(l)3x+2=5y-3;(2)x2-4;(4)^-4=(%+2)2;(5)ax2+bx+c=0.

x

四、应用拓展

求证:关于x的方程(/-&〃+17)x2+2/〃x+1=0,不论取何值,该方程都是一元二次方程.

分析:要证明不论,"取何值,该方程都是一元二次方程,只要证明苏-8〃?+17#0即可.

证明:,“2-8,〃+17=(m-4)2+1.

V(/n-4)2^0,

.,.(m-4)2+l>0,即(*4)2+1r0,

不论,“取何值,该方程都是一元二次方程.

练习:1.方程(2a—4)/一2法+a=0,在什么条件下此方程为一元二次方程?在什么条件下

此方程为一元一次方程?

2.当初为何值时,方程⑺+1廿"2+273+5=0是关于x的一元二次方程

五、归纳小结(学生总结,教师点评)

本节课要掌握:

(1)一元二次方程的概念;(2)一元二次方程的一般形式以2+法+片0(“#0)和二次项、二次

项系数,一次项、一次项系数,常数项的概念及其运用.

精品文档可编辑的精品文档

精品文档精心整理

2.2一元二次方程的解法

教学目标

会利用因式分解法、开平方法、配方法、公式法解一元二次方程;能利用一元二次方程

根的判别式判断一元二次方程根的情况.

重难点

重点:四种一元二次方程的解法和一元二次方程根的判别式的意义.

难点:用因式分解法和配方法解一元二次方程.

教学过程

一、探究新知

上节课我们学习了一元二次方程的有关概念,同学们还记得吗?谁能说一说?

教师:我们知道“能使一元二次方程两边相等的未知数的值叫做一元二次方程的解(或

根)”,那么我们怎么求一元二次方程的解呢?

学生思考,教师引入新课.

二、例题导学

1.因式分解法

例1解下列方程:

(D/SRO.(2)25/=16.

解:(1)将原方程的左边分解因式,得x(x-3)=0,则x=0,或x-3=0,解得由=0,也=3.

(2)移项,得25/-16=0.将方程的左边分解因式,得(5x-4)(5x+4)=0,则“4=0,

44

或5x+4=0,解得,%2=-y.

像上面这种利用因式分解解一元二次方程的方法叫做因式分解法.这种方法把解一个一

元二次方程转化为解两个一元一次方程.

例2解下列一元二次方程:

(l)(x-5)(3x-2)=10.

(2)(3x-4)2=(4x-3)2.

学生独立完成,教师巡视、指导.

2.开平方法

一般地,对于形如产=。320)的方程,根据平方根的定义,可得*1=布,*2=-八.这种

解一元二次方程的方法叫做开平方法.

例3用开平方法解下列方程:

(1)3x2-48=0.(2)(2X-3)2=7.

解:⑴移项,得3/=48.方程的两边同除以3,得/=16.解得制=4,及=-4.

(2)由原方程,得2x4=百,或然-3=-近,解得x尸过正,尬=三区.

22

精品文档可编辑的精品文档

精品文档精心整理

3.配方法

将一元二次方程的左边配成一个完全平方式,右边为一个非负数,然后用开平方法求

解,这种解一元二次方程的方法叫做配方法.

例4用配方法解下列一元二次方程:

(1)x2+6r=1.(2)x2+5x-6=0.

解:(1)方程的两边同加上9,得/+6X+9=1+9,即(1+3)2=10.则]+3="。,或x+3=・JiU,

解得汨=-3+,16,X2=-3-Vio.

(2)移项,得3+546•方程的两边同加上§)2,得f+5x+g)2=6+($2,即(x+》2=?.

5757

贝ljx+—=—,或X+—=,解得汨=1,X2=-6.

2222

4.公式法

(l)ar2—7x+3=0.⑵加+云+3=0.

(3)如果这个一元二次方程是一般形式以2+公+片03/0),你能否用上面配方法的步骤求

出它们的两根,请同学独立完成下面这个问题.

问题:已知a/+〃x+c=0(aW0),试推导它的两个根xi=北上—"-4〃c,%2=

2a

』一,伊一4ac(这个方程一定有解吗?什么情况下有解?)

2a

解:移项,得ax2+bx=・c.

二次项系数化为1,得好+巳b户.上c.

aa

、bb、cb、

配方,得/+—x+(——)2=--+(——)2,

a2'aa2a

.b、,h2-4ac

n即n(x+丁六------

2a4a~

A2—4ac

V4tz2>0,当时,

4a2

/6、2/JU-4ac、2

(x+—)-=(-------------------------)2,

2a2a

byjb2-4ac日n-h±y1b2-4ac

直接开平方,得*+丁=±---------------,u|JX------------------------

2a2a2a

._-b+yjb2-4ac-b-\Jb2-4ac

•»X[-------------------,X2=----------------------

2a2a

由上可知,一元二次方程加+bx+c=0(aH0)的根由方程的系数小〃,c•而定,因此:

精品文档可编辑的精品文档

精品文档精心整理

(1)解一元二次方程时,可以先将方程化为一般形式以2+公+,=0,当加-4碇20时,将。,

b,c代入式子x=-b±7'-4ac就得到方程的根.(公式所出现的运算,恰好包括了所学过

2a

的六种运算,力口、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性)

(2)这个式子叫做一元二次方程的求根公式.

(3)利用求根公式解一元二次方程的方法叫做公式法.

例5用公式法解下列一元二次方程:

、31

(2)4x2+l=-4x;(3)—x2-2x--=0.

42

5)±

解:(1)对方程2f-5x+3=0,a=2,b=-5,c=3,b2-4〃c=(-5)2-4x2x3=l,:.x=^^=—9

2x24

(2)移项,得4/+以+1=0,则。=4/=4,c=l/2-4〃c=42~4x4xl=0,二,“丘=」

2x42

2

••Xj=%2=—

2

(3)方程的两边同乘4,得.则。=3/=-8,c=-2/2-4oc=(-8)2-4x3x(-2)=88,

・_4+V22_4-V22

••x-,•X1=-,x

2x32=-~

从一元二次方程以2+法+-0(〃金0)的求根公式的推导过程中不难看出,方程的根的

情况由代数式炉4/C的值来决定.因此岳-4〃c叫做一元二次方程的根的判别式,它的值与

一元二次方程的根的关系是:

於-4a>0则方程or2+Zzx+c=0(qW0)有两个不相等的实数根;

〃2・4。。=0贝!J方^,ax2+bx+c=0(aW0)有两个相等的实数根;

b2-4ac<0则方程a¥2+〃x+c=0(q丰0)没有实数根.

精品文档可编辑的精品文档

精品文档精心整理

2.3一元二次方程的应用

教学目标

1.让学生在经历运用一元二次方程解决实际问题的过程中体会一元二次方程的应用价

值.

2.在运用一元二次方程解决实际问题的过程中,提高学生分析问题、解决问题的能力.

重难点

重点:建立一元二次方程模型解决实际问题.

难点:将实际问题转化成一元二次方程模型.

教学过程

一、复习引入

1、回顾:不解一元二次方程,你如何判断根的情况?

2、复习列方程解应用题的一般步骤:

(1)审题:仔细阅读题目,分析题意,明确题目要求,弄清已知数、未知数以及它们之

间的关系;

(2)设未知数:用字母(如x)表示题中的未知数,通常是求什么量,就设这个量为x;

(3)列方程:根据题中已知量和未知量之间的关系列出方程;

(4)解方程:求出所给方程的解:

(5)检验:既要检验所求方程的解是否满足所列出的方程,又要检验它是否能使实际问

题有意义;

(6)作答:根据题意,选择合理的答案.

二、讲解例题

例1某花圃用花盆培育某种花苗,经过试验发现,每盆花的盈利与每盆株数构成一定的

关系.当每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单

株盈利就减少0.5元.要使每盆的盈利为10元,则每盆应植多少株?

分析:本题涉及的主要数量有每盆的花苗株数,平均单株盈利,每盆花苗的盈利,主要

数量关系有:平均单株盈利x株数=每盆盈利;平均单株盈利=3-0.5x每盆增加的株数.

解:设每盆花苗增加x株,则每盆花苗有(3+x)株,平均单株盈利为(3-0.5%)元.

由题意,得(x+3)(3-0.5%)=10.

化简、整理,得f-3x+2=0.

解这个方程,得汨=1,及=2.

经检验,xi=l,及=2都是方程的解,且符合题意.

答:要使每盆的盈利为10元,则每盆应植入4株或5株.

教师:想一想,列一元二次方程解应用题的基本步骤与列一元一次方程解应用题相同

吗?列一元二次方程解应用题时,你认为有哪些地方更需引起注意?

精品文档可编辑的精品文档

精品文档精心整理

学生:列一元二次方程解应用题的基本步骤与列一元一次方程解应用题相同.列一元二

次方程解应用题时,应该注意求出来的根是否满足题意.

教师引导做教材P40例2和教材P41例3.

三、课堂小结:

列一元二次方程解决实际问题的步骤,审、设、找、歹h解、检、答,注意一定要检验

求出的根是否满足题意.

精品文档可编辑的精品文档

精品文档精心整理

2.4一元二次方程根与系数的关系

教学目标

1、了解一元二次方程根与系数的关系,并能进行简单的运用.

2、能通过对根与系数关系的探索,提高代数推理的能力与意识.

教学重难点

1.了解一元二次方程根与系数的关系,并能进行简单的运用.

2.能通过对根与系数关系的探索,提高代数推理的能力与意识.

教学设计

探索发现

观察下表,你能发现下列一元二次方程根与系数有什么关系吗?

ax2+Z?x+c=OXIX2

W—3x+2=012

元2+3%+2=0-1-2

x2-5%+6=023

x2+5尤+6=0-2-3

X2-3X=003

解释规律

你能解释刚才的发现吗?

一元二次方程分2+bx+c=O(aWO),如果加一4〃C20,它的两个根分别是X”x?.

总结发现

一元二次方程如果加一4〃c20,它的两个根分别是汨,了2.

bc

那么X]+方=---,玉•/=一•

aa

例题精讲

11

例1设X”X2是一元二次方程5d-7x-3=0的两个根,求》『+及2和一+一的值.

X|x2

例2已知一个一元二次方程的二次项系数是3,它的两个根分别是:,1.写出这个方程.

尝试与交流

小明在一本课外读物中读到如下一段文字:

“一元二次方程/一*=0的两个根分别是2+6和2-6”,

你能写出这个方程中被墨迹污染的一次项系数和常数项吗?

精品文档可编辑的精品文档

精品文档精心整理

达标练习

教材P46课内练习第1,2题.

课堂小结

1.一元二次方程根与系数的关系:如果x”X2是一元二次方程以2+灰+c=0的两个根,

那么X|+X2=b;X'X2~C,

aa

2.运用一元二次方程根与系数的关系时,先要把方程化成一般形式.

3.运用一元二次方程根与系数的关系时,要特别注意,方程有实根的条件,即当且仅

当加一4小?0时,才能运用一元二次方程根与系数的关系.

课后作业

适当补充针对性练习.

精品文档可编辑的精品文档

精品文档精心整理

3.1平均数

教学目标

知识与技能

1.在实际情境中理解平均数的概念和意义,会计算一组数据的算术平均数.

2.理解加权平均数的意义,会进行加权平均数的计算.

过程与方法

初步经历数据的收集、加工整理的过程,能利用算术平均数和加权平均数解决一些实际

问题,提高学生的数学应用能力.

情感、态度与价值观

培养学生互相合作与交流的能力,增强学生的数学应用意识.

教学重点

算案平均数和加权平均数的意义和计算方法.

教学难点

算采平均数和加权平均数的计算方法.

教学设计

一.创设情境,提出问题.

图片欣赏

(出示课件:水果在收获前,果农常会先估计果园里果树的产量,你认为应该怎样估计

呢?)

二,启发诱导,探索新知.

]合作学习

某果农种植的100棵苹果树即将收获.果品公司在付给果农定金前,需要对这些果树的苹

果总产量进行估计.

(1)果农任意摘下20个苹果,称得这20个苹果的总质量为4千克.这20个苹果的平均质量是

多少千克?

(2)果农从100棵苹果树中任意选出10棵,数出这10棵苹果树上的苹果数,得到以下数据

(单位:个):

154,150,155,155,159,150,152,155,153,157.你能估计出平均每棵树的苹果

个数吗?

(3)根据上述两个问题,你能估计出建100棵苹果树的苹果总产量吗?

2.引出平均数的概念,平均数用符号工表示,读做“X拔”,计算平均数的公式

-1,

x=-(x+x+-+x).

ni2n

指出:在实践中,常用样本的平均数来估计总体的平均数.例如,在上面的例子中,用

20个苹果的平均质量0.2千克来估计100棵苹果树上苹果的平均质量,用10棵苹果树的平均苹

果个数(154个)来估计100棵苹果树的平均苹果个数.

3.完成教材P54做一做.

三、学以致用,体验成功.

1.例题讲解

例1统计一名射击运动员在某次训练中15次射击的中靶环数,获得如下数据:

6,7,8,7,7,8,10,9,8,8,9,9,8,10,9.

方法(一):直接根据平均数的意义来计算,这里的王,々,…,x"指的是什么?〃等

于多少?

方法(二):15个数据中有几个6,几个7,几个8,几个9,几个10?〃=15与这些相同数

的个数之间有什么关系?所求的平均数i的算式还可以写成怎样的算式?

2.由上例中的方法(二)概括出加权平均数的概念和权的意义.

3.例题讲解

例2某校在一次广播体操比赛中,801班,802班,803班的各项得分如下表.

||服装统一|动作整齐|动作灌赢

精品文档可编辑的精品文档

精品文档精心整理

801班808487

802班987880

803班908283

(1)如果根据三项得分的平均数从高到低确定名次,那么三个班的排名顺序怎样?

(2)如果学校认为这三个项目的重要程度有所不同,而给予“服装统一”“动作整齐”

“动作准确”三个项目在总分中所占的比例分别为15%,35%,50%,那么三个班的排名顺

序又怎样?

分析:(1)求算术平均数.(2)涉及加权平均数,不妨以801班为例,表中相应的3个数据为

再=80,超=84,七=87,给定三个项目的权的比为15:35:50,即表示工:&:力=

15:35:50,因此可设工=15k,=35k»f3=50k(k>0),加权平均数

-15Ax80+35火x84+50左x8715x80+35x84+50x87八、

X=-------------------------=----------------------=84.9(分).

15k+35k+5Qk15+35+50

4.完成教材P56课内练习第1,2题.

四、总结回顾,反思内化.

1.学习了平均数、加权平均数,会计算平均数和加权平均数.

2.会用样本的平均数来估计总体的平均数.

五、作业

教材P57作业题第1,2,4,5,6题.

精品文档可编辑的精品文档

精品文档精心整理

3.2中位数和众数

教学目标

知识与技能

理解中位数、众数的概念和意义,会求一组数据的中位数、众数.

过程与方法

通过数据的整理与分析,体会统计的数学思想.

情感态度与价值观

培养学生互相合作与交流的能力,增强学生的数学应用能力.

教学重点

理解中位数、众数的概念和意义,会求一组数据的中位数、众数.

教学难点

求一组数据的中位数、众数.

教学设计

1.情境创设

(1)课本提供的情境,是为了说明“平均数”不能准确反映“平均水平”,教学中也可设

计其他的情境,只要一组数据中,个别数据与其他数据有很大的差异即可.

(2)结合课本中的“讨论”,还可选用以下的情境:一家鞋店在一段时间内销售了某种女

鞋111双,其中各种尺码的鞋销售量如下:

尺码373839404142

双数5104030206

这些数据的平均数约等于39.6码,中位数等于39.5码.事实上,根本就不存在39.6码和3

9.5码的鞋子,此时平均数和中位数并没有什么意义.在这个问题中,鞋店比较关心什么?

2.探索活动

通过探索活动,让学生认识到此时平均数和中位数并没有什么意义,从而引进众数.一

般来说,商店应多进众数所对应的尺码的鞋子.为了便于学生理解众数的概念,可考虑补充

一些应用众数的实例.

3课堂探讨

平均数、中位数和众数的关系?

平均数是描述一组数据的一种常用指标,反映了这组数据中各数据的平均大小.

中位数是描述一组数据的另一种指标,如果将一组数据按由小到大的顺序排列(有相等

的数据也要全部参加排列),那么中位数的左边和右边恰有一样多的数据.

众数告诉我们,这个值出现的次数最多.一组数据可以有不止一个众数,也可以没有众

数.

平均数、中位数和众数从不同的侧面概括了一组数据,我们应根据不同情况,选择这一

个指标中的一个作为一组数据的代表.

4.例题教学

例1某工程咨询公司技术部门员工一月份工资报表如下(单位:元).

技术部总工工程技术技术技术技术技术技术技术见习

员工程师师员A员B员C员D员E员F员G生H

精品文档可编辑的精品文档

精品文档精心整理

工资1000060004000400030002800280028002400800

(1)求该公司技术部员工一个月工资的平均数、中位数和众数.

(2)作为一般技术员,若考虑该公司技术部门工作,该如何看待工资情况?

5.小结

(1)一般地,设有"个数据,首先将这"个数据由小到大(或由大到小)的顺序排列.

若〃是奇数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论