




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东南山集团东海外国语学校数学九年级第一学期期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.△ABC中,∠ACB=90°,CD⊥AB于D,已知:cos∠A=,则sin∠DCB的值为()A. B. C. D.2.若数据,,…,的众数为,方差为,则数据,,…,的众数、方差分别是()A., B., C., D.,3.如图,已知点是第一象限内横坐标为2的一个定点,轴于点,交直线于点,若点是线段上的一个动点,,,点在线段上运动时,点不变,点随之运动,当点从点运动到点时,则点运动的路径长是()A. B. C.2 D.4.下列判断正确的是()A.对角线互相垂直的平行四边形是菱形 B.两组邻边相等的四边形是平行四边形C.对角线相等的四边形是矩形 D.有一个角是直角的平行四边形是正方形5.如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a-b+c的值为(
)A.0
B.-1
C.1
D.26.下列各组图形中,一定相似的是()A.任意两个圆B.任意两个等腰三角形C.任意两个菱形D.任意两个矩形7.气象台预报“铜陵市明天降水概率是75%”.据此信息,下列说法正确的是()A.铜陵市明天将有75%的时间降水 B.铜陵市明天将有75%的地区降水C.铜陵市明天降水的可能性比较大 D.铜陵市明天肯定下雨8.如图,已知A,B是反比例函数y=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C,动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过P作PM⊥x轴,垂足为M.设三角形OMP的面积为S,P点运动时间为t,则S关于x的函数图象大致为()A. B. C. D.9.矩形、菱形、正方形都一定具有的性质是()A.邻边相等 B.四个角都是直角C.对角线相等 D.对角线互相平分10.如图,DC是⊙O的直径,弦AB⊥CD于点F,连接BC,BD,则错误结论为()A.OF=CF B.AF=BF C. D.∠DBC=90°11.用一个平面去截一个圆锥,截面的形状不可能是()A.圆 B.矩形 C.椭圆 D.三角形12.方程x2﹣3x=0的根是()A.x=0 B.x=3 C., D.,二、填空题(每题4分,共24分)13.已知抛物线与轴交点的横坐标分别为3,1;与轴交点的纵坐标为6,则二次函数的关系式是____.14.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是_____.15.点(2,3)关于原点对称的点的坐标是_____.16.如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点,点在上,,与交于点,连接,若,,则_____.17.在平面直角坐标系xOy中,过点P(0,2)作直线l:y=x+b(b为常数且b<2)的垂线,垂足为点Q,则tan∠OPQ=_____.18.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为.三、解答题(共78分)19.(8分)如图,已知直线y=﹣x+4与反比例函数的图象相交于点A(﹣2,a),并且与x轴相交于点B.(1)求a的值;(2)求反比例函数的表达式;(3)求△AOB的面积.20.(8分)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在轴,轴的正半轴上.函数的图象与CB交于点D,函数(为常数,)的图象经过点D,与AB交于点E,与函数的图象在第三象限内交于点F,连接AF、EF.(1)求函数的表达式,并直接写出E、F两点的坐标.(2)求△AEF的面积.21.(8分)如图,在△ABC中,∠C=90°,以AC为直径的⊙O交AB于点D,连接OD,点E在BC上,BE=DE.(1)求证:DE是⊙O的切线;(2)若BC=6,求线段DE的长;(3)若∠B=30°,AB=8,求阴影部分的面积(结果保留).22.(10分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?23.(10分)已知(1)求的值;(2)若,求的值.24.(10分)如图,已知抛物线y=x2-x-3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.25.(12分)某校网络学习平台开通以后,王老师在平台上创建了教育工作室和同学们交流学习.随机抽查了20天通过访问王老师工作室学习的学生人数记录,统计如下:(单位:人次)2020281520253020121330251520101020172426“希望腾飞”学习小组根据以上数据绘制出频数分布表和频数分布直方图的一部分如图:频数分布表分组频数(单位:天)10≤x<15415≤x<20320≤x<25a25≤x<30b30≤x<352合计20请根据以上信息回答下列问题:(1)在频数分布表中,a的值为,b的值为,并将频数分布直方图补充完整;(2)求这20天访问王老师工作室的访问人次的平均数.26.在四边形ABCD中,对角线AC、BD相交于点O,设锐角∠DOC=α,将△DOC按逆时针方向旋转得到△D′OC′(0°<旋转角<90°)连接AC′、BD′,AC′与BD′相交于点M.(1)当四边形ABCD是矩形时,如图1,请猜想AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;(2)当四边形ABCD是平行四边形时,如图2,已知AC=kBD,请猜想此时AC′与BD′的数量关系以及∠AMB与α的大小关系,并证明你的猜想;(3)当四边形ABCD是等腰梯形时,如图3,AD∥BC,此时(1)AC′与BD′的数量关系是否成立?∠AMB与α的大小关系是否成立?不必证明,直接写出结论.
参考答案一、选择题(每题4分,共48分)1、C【分析】设,根据三角函数的定义结合已知条件可以求出AC、CD,利用∠BCD=∠A,即可求得答案.【详解】∵,
∴,
∵,
∴设,则,
∴,
∵,
∴,,
∴,
∴.故选:C.【点睛】本题考查直角三角形的性质、三角函数的定义、勾股定理、同角的余角相等等知识,熟记性质是解题的关键.2、C【分析】根据众数定义和方差的公式来判断即可,数据,,…,原来数据相比都增加2,,则众数相应的加2,平均数都加2,则方差不变.【详解】解:∵数据,,…,的众数为,方差为,∴数据,,…,的众数是a+2,这组数据的方差是b.故选:C【点睛】本题考查了众数和方差,当一组数据都增加时,众数也增加,而方差不变.3、D【分析】根据题意利用相似三角形可以证明线段就是点运动的路径(或轨迹),又利用∽求出线段的长度,即点B运动的路径长.【详解】解:由题意可知,,点在直线上,轴于点,则为顶角30度直角三角形,.如下图所示,设动点在点(起点)时,点的位置为,动点在点(终点)时,点的位置为,连接,∵,∴又∵,∴(此处也可用30°角的)∴∽,且相似比为,∴现在来证明线段就是点运动的路径(或轨迹).如图所示,当点运动至上的任一点时,设其对应的点为,连接,,∵,∴又∵,∴∴∽∴又∵∽∴∴∴点在线段上,即线段就是点运动的路径(或轨迹).综上所述,点运动的路径(或轨迹)是线段,其长度为.故选:【点睛】本题考查坐标平面内由相似关系确定的点的运动轨迹,难度很大.本题的要点有两个:首先,确定点B的运动路径是本题的核心,这要求考生有很好的空间想象能力和分析问题的能力;其次,由相似关系求出点B运动路径的长度,可以大幅简化计算,避免陷入坐标关系的复杂运算之中.4、A【分析】利用特殊四边形的判定定理逐项判断即可.【详解】A、对角线互相垂直的平行四边形是菱形,此项正确B、两组对边分别相等的四边形是平行四边形,此项错误C、对角线相等的平行四边形是矩形,此项错误D、有一个角是直角的平行四边形是矩形,此项错误故选:A.【点睛】本题考查了特殊四边形(平行四边形、菱形、矩形、正方形)的判定定理,掌握理解各判定定理是解题关键.5、A【解析】试题分析:因为对称轴x=1且经过点P(3,1)所以抛物线与x轴的另一个交点是(-1,1)代入抛物线解析式y=ax2+bx+c中,得a-b+c=1.故选A.考点:二次函数的图象.6、A【分析】根据相似图形的性质,对各选项分析判断即可得出答案.【详解】A、任意两个圆,一个圆放大或缩小后能够与另外一个圆重合,所以任意两个圆一定是相似图形,故选A.B、任意两个等腰三角形,对应边不一定成比例,对应角不一定相等,所以不一定相似,故本选项错误.C、任意两个菱形,对应边成比例,但对应角不一定相等,所以不一定相似,故本选项错误.D、任意两个矩形,对应边不一定成比例,对应角都是直角,一定相等,所以也不一定相似,故本选项错误.故选A.【点睛】本题考查了相似图形的概念,灵活运用相似图形的性质是解题的关键.7、C【分析】根据概率表示某事情发生的可能性的大小,依次分析选项可得答案.【详解】解:根据概率表示某事情发生的可能性的大小,分析可得:
A、铜陵市明天将有75%的时间降水,故此选项错误;
B、铜陵市明天将有75%的地区降水,故此选项错误;
C、明天降水的可能性为75%,比较大,故此选项正确;
D、明天肯定下雨,故此选项错误;
故选:C.【点睛】此题主要考查了概率的意义,关键是理解概率表示随机事件发生的可能性大小:可能发生,也可能不发生.8、A【分析】结合点P的运动,将点P的运动路线分成O→A、A→B、B→C三段位置来进行分析三角形OMP面积的计算方式,通过图形的特点分析出面积变化的趋势,从而得到答案.【详解】设∠AOM=α,点P运动的速度为a,当点P从点O运动到点A的过程中,S=a2•cosα•sinα•t2,由于α及a均为常量,从而可知图象本段应为抛物线,且S随着t的增大而增大;当点P从A运动到B时,由反比例函数性质可知△OPM的面积为k,保持不变,故本段图象应为与横轴平行的线段;当点P从B运动到C过程中,OM的长在减少,△OPM的高与在B点时相同,故本段图象应该为一段下降的线段;故选A.点睛:本题考查了反比例函数图象性质、锐角三角函数性质,解题的关键是明确点P在O→A、A→B、B→C三段位置时三角形OMP的面积计算方式.9、D【解析】矩形、菱形、正方形都是平行四边形,所以一定都具有的性质是平行四边形的性质,即对角线互相平分.故选D.10、A【分析】分别根据垂径定理及圆周角定理对各选项进行分析即可.【详解】解:∵DC是⊙O直径,弦AB⊥CD于点F,
∴AF=BF,,∠DBC=90°,
∴B、C、D正确;
∵点F不一定是OC的中点,
∴A错误.故选:A.【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键.11、B【分析】利用圆锥的形状特点解答即可.【详解】解:平行于圆锥的底面的截面是圆,故A可能;截面不可能是矩形,故B符合题意;斜截且与底面不相交的截面是椭圆,故C可能;过圆锥的顶点的截面是三角形,故D可能.故答案为B.【点睛】本题主要考查了截一个几何体所得的截面的形状,解答本题的关键在于明确截面的形状既与被截的几何体有关,还与截面的角度和方向有关.12、D【分析】先将方程左边提公因式x,解方程即可得答案.【详解】x2﹣3x=0,x(x﹣3)=0,x1=0,x2=3,故选:D.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.二、填空题(每题4分,共24分)13、.【分析】先设所求抛物线是,根据题意可知此线通过,,,把此三组数代入解析式,得到关于、、的方程组,求解即可.【详解】解:设所求抛物线是,根据抛物线与轴交点的横坐标分别为3,1;与轴交点的纵坐标为6,得:,解得,∴函数解析式是.故答案为:.【点睛】本题考查了用待定系数法求函数解析式,方程组的解法,熟悉相关解法是解题的关键.14、1【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案.【详解】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0,解得:x1=2,x2=5,故等腰三角形的腰长只能为5,5,底边长为2,则其周长为:5+5+2=1.故答案为:1.【点睛】本题考查因式分解法解一元二次方程,需要熟悉三角形三边的关系以及等腰三角形的性质.15、(-2,-3).【解析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”可知:点P(2,3)关于原点对称的点的坐标是(−2,−3).故答案为(-2,-3).16、.【解析】过点C作CM⊥DE于点M,过点E作EN⊥AC于点N,先证△BCD∽△ACE,求出AE的长及∠CAE=60°,推出∠DAE=90°,在Rt△DAE中利用勾股定理求出DE的长,进一步求出CD的长,分别在Rt△DCM和Rt△AEN中,求出MC和NE的长,再证△MFC∽△NFE,利用相似三角形对应边的比相等即可求出CF与EF的比值.【详解】解:如图,过点作于点,过点作于点,∵,,∴,∵在中,,∴,在与中,∵,∴,∴,∵,∵,∴,∴∽,∴,∴,∴,,∴,在中,,在中,,∴,,在中,,在中,,∵,∴∽,∴,故答案为:.【点睛】本题考查了相似三角形的判定与性质,勾股定理,解直角三角形等,解题关键是能够通过作适当的辅助线构造相似三角形,求出对应线段的比.17、【解析】试题分析:如图,设直线l与坐标轴的交点分别为A、B,∵∠AOB=∠PQB=90°,∠ABO=∠PBQ,∴∠OAB=∠OPQ,由直线的斜率可知:tan∠OAB=,∴tan∠OPQ=;故答案为.考点:1.一次函数图象上点的坐标特征;2.解直角三角形.18、1:1.【解析】试题分析:∵△ABC与△DEF的相似比为1:1,∴△ABC与△DEF的周长比为1:1.故答案为1:1.考点:相似三角形的性质.三、解答题(共78分)19、(1)a=6;(2);(3)1【解析】(1)把A的坐标代入直线解析式求a;(2)把求出的A点坐标代入反比例解析式中求k,从而得解析式;求B点坐标,结合A点坐标求面积.【详解】解:(1)将A(﹣2,a)代入y=﹣x+4中,得:a=﹣(﹣2)+4,所以a=6(2)由(1)得:A(﹣2,6)将A(﹣2,6)代入中,得到:,即k=﹣1所以反比例函数的表达式为:(3)如图:过A点作AD⊥x轴于D;∵A(﹣2,6)∴AD=6在直线y=﹣x+4中,令y=0,得x=4∴B(4,0),即OB=4∴△AOB的面积S=OB×AD=×4×6=1.考点:反比例函数综合题.20、(1),E(2,1),F(-1,-2);(2).【分析】(1)先得到点D的坐标,再求出k的值即可确定反比例函数解析式;(2)过点F作FG⊥AB,与BA的延长线交于点G.由E、F两点的坐标,得到AE=1,FG=2-(-1)=3,从而得到△AEF的面积.【详解】解:(1)∵正方形OABC的边长为2,∴点D的纵坐标为2,即y=2,将y=2代入y=2x,得到x=1,∴点D的坐标为(1,2).∵函数的图象经过点D,∴,∴k=2,∴函数的表达式为.(2)过点F作FG⊥AB,与BA的延长线交于点G.根据反比例函数图象的对称性可知:点D与点F关于原点O对称∴点F的坐标分别为(-1,-2),把x=2代入得,y=1;∴点E的坐标(2,1);∴AE=1,FG=2-(-1)=3,∴△AEF的面积为:AE•FG=.21、(1)详见解析;(2)3;(3)【分析】(1)根据OA=OD,BE=DE,得∠A=∠1,∠B=∠2,根据∠ACB=90°,即可得∠1+∠2=90°,即可得OD⊥DE,从而可证明结论;(2)连接CD,根据现有条件推出CE是⊙O的切线,再结合DE是⊙O的切线,推出DE=CE又BE=DE,即可得出DE;(3)过O作OG⊥AD,垂足为G,根据已知条件推出AD,AG和OG的值,再根据,即可得出答案.【详解】解:(1)证明:∵OA=OD,BE=DE,∴∠A=∠1,∠B=∠2,∵△ABC中,∠ACB=90°,∴∠A+∠B=90°,∴∠1+∠2=90°,∴∠ODE=180°-(∠1+∠2)=90°,∴OD⊥DE,又OD为⊙O的半径,∴DE是⊙O的切线;(2)连接CD,则∠ADC=90°,∵∠ACB=90°,∴AC⊥BC,又AC为⊙O的直径,∴CE是⊙O的切线,又DE是⊙O的切线,∴DE=CE又BE=DE,∴DE=CE=BE=;(3)过O作OG⊥AD,垂足为G,则,∵Rt△ABC中,∠B=30°,AB=8,∴AC=,∠A=60°(又OA=OD),∴∠COD=120°,△AOD为等边三角形,∴AD=AO=OD=2,∴,∴OG,∴,∴阴影部分的面积为.【点睛】本题考查了圆的切线的性质和判定,三角函数和等边三角形的性质,掌握知识点是解题关键.22、(1)两次下降的百分率为10%;(2)要使每月销售这种商品的利润达到110元,且更有利于减少库存,则商品应降价2.1元.【分析】(1)设每次降价的百分率为x,(1﹣x)2为两次降价后的百分率,40元降至32.4元就是方程的等量条件,列出方程求解即可;(2)设每天要想获得110元的利润,且更有利于减少库存,则每件商品应降价y元,由销售问题的数量关系建立方程求出其解即可【详解】解:(1)设每次降价的百分率为x.40×(1﹣x)2=32.4x=10%或190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件32.4元,两次下降的百分率为10%;(2)设每天要想获得110元的利润,且更有利于减少库存,则每件商品应降价y元,由题意,得解得:=1.1,=2.1,∵有利于减少库存,∴y=2.1.答:要使商场每月销售这种商品的利润达到110元,且更有利于减少库存,则每件商品应降价2.1元.【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.23、(1)3;(2)a=-4,b=-6,c=-8.【解析】(1)设,可得,,,代入原式即可解答;(2)把,,,带入(2)式即可计算出k的值,从而求解.【详解】(1)设,则,,∴(2)由(1)解得,,,【点睛】本题考查比例的性质,设是解题关键.24、(1)A点坐标为(4,0),D点坐标为(-2,0),C点坐标为(0,-3);(2)或或;(3)在抛物线上存在一点P,使得以点A、B、C、P四点为顶点所构成的四边形为梯形;点P的坐标为(-2,0)或(6,6).【分析】(1)令y=0,解方程可得到A点和D点坐标;令x=0,求出y=-3,可确定C点坐标;(2)根据两个同底三角形面积相等得出它们的高相等,即纵坐标绝对值相等,得出点M的纵坐标为:,分别代入函数解析式求解即可;(3)分BC为梯形的底边和BC为梯形的腰两种情况讨论即可.【详解】(1)在中令,解得,∴A(4,0)、D(-2,0).在中令,得,∴C(0,-3);(2)过点C做轴的平行线,交抛物线与点,做点C关于轴的对称点,过点做轴的平行线,交抛物线与点,如下图所示:∵△MAD的面积与△CAD的面积相等,且它们是等底三角形∴点M的纵坐标绝对值跟点C的纵坐标绝对值相等∵点C的纵坐标绝对值为:∴点M的纵坐标绝对值为:∴点M的纵坐标为:当点M的纵坐标为时,则解得:或(即点C,舍去)∴点的坐标为:当点M的纵坐标为时,则解得:∴点的坐标为:,点的坐标为:∴点M的坐标为:或或;(3)存在,分两种情况:①如图,当BC为梯形的底边时,点P与D重合时,四边形ADCB是梯形,此时点P为(-2,0).②如图,当BC为梯形的腰时,过点C作CP//AB,与抛物线交于点P,∵点C,B关于抛物线对称,∴B(2,-3)设直线AB的解析式为,则,解得.∴直线AB的解析式为.∵CP//AB,∴可设直线CP的解析式为.∵点C在直线CP上,∴.∴直线CP的解析式为.联立,解得,∴P(6,6).综上所述,在抛物线上存在点P,使得以A、B、C、P四点为顶点的四边形为梯形,点P的坐标为(-2,0)或(6,6).考点:1.二次函数综合题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.轴对称的应用(最短线路问题);5.二次函数的性质;6.梯形存在性问题;7.分类思想的应用.25、(1)7、1,直方图见解析;(2)20人次.【分析】(1)根据题目所给数据即可得出a、b的值,从而补全直方图;
(2)根据平均数的概念列式求解可得.【详解】解:(1)由题意知20≤x<25的天数a=7,25≤x<30的天数b=1,补全直方图如下:故答案为:7、1.(2)这20天访问王老师工作室的访问人次的平均数为:答:这20天访问王老师工作室的访问人次的平均数为20人次.【点睛】此题考查了频数(率)分布直方图,平均数,正确识别统计图及统计表中的数据是解本题的关键.26、(1)BD′=AC′,∠AMB=α,见解析;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 植物新品种权转让与农业知识产权保护协议
- 股权激励与公司战略目标同步合作协议
- 子女意外伤害医疗报销分割协议
- 智能家居系统研发与市场推广合作合同
- 知识产权税费减免政策解析及实施合同
- 危险化学品生产企业安全员劳动合同
- 桥梁抗震支架安装及后期养护合作协议
- 知识产权分割与知识产权保护及运营协议
- 医疗器械临床试验项目临床研究资料保密协议
- 子女婚嫁事宜协商及财产分配协议
- 【MOOC】英语口语进阶-南京大学 中国大学慕课MOOC答案
- 【MOOC】旅游学概论-中国地质大学(武汉) 中国大学慕课MOOC答案
- 义务教育质量监测应急专项预案
- GB/T 29531-2013泵的振动测量与评价方法
- VSM(价值流图中文)课件
- 上海交通大学医学院附属仁济医院-日间手术管理信息化实践与发展
- 有源、无源滤波器实验报告
- SWOT分析法很全面课件
- 供应室手工清洗操作流程课件
- 消防应急疏散演练人员签到表(标准通用版)
- 数据中心基础设施管理系统DCIM整体方案
评论
0/150
提交评论