版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省兴宁市一中高二数学第二学期期末学业水平测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.同学聚会上,某同学从《爱你一万年》,《十年》,《父亲》,《单身情歌》四首歌中选出两首歌进行表演,则《爱你一万年》未选取的概率为()A.B.C.D.2.已知函数(为自然对数的底),若方程有且仅有四个不同的解,则实数的取值范围是().A. B. C. D.3.已知,,则A. B. C. D.4.已知向量,则与的夹角为()A.0 B. C. D.5.已知,设函数若关于的不等式在上恒成立,则的取值范围为()A. B. C. D.6.若函数,设,,,则,,的大小关系A. B.C. D.7.展开式中的系数为()A.15 B.20 C.30 D.358.椭圆的点到直线的距离的最小值为()A. B. C. D.09.已知椭圆的左、右焦点分别为、,过且斜率为的直线交椭圆于、两点,则的内切圆半径为()A. B. C. D.10.若,则A.10 B.15 C.30 D.6011.已知可导函数的导函数为,若对任意的,都有,且为奇函数,则不等式的解集为()A. B. C. D.12.已知,那么“”是“且”的A.充分而不必要条件 B.充要条件C.必要而不充分条件 D.既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.高三某位同学参加物理、化学、政治科目的等级考,已知这位同学在物理、化学、政治科目考试中达A的概率分别为、、,这三门科目考试成绩的结果互不影响,则这位考生至少得1个A的概率为____14.已知正方体的棱长为2,是棱的中点,点在正方体内部或正方体的表面上,且平面,则动点的轨迹所形成的区域面积是______.15.曲线绕坐标原点顺时针旋转后得到的曲线的方程为____.16.若双曲线的焦点在轴上,焦距为,且过点,则双曲线的标准方程为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,其中.(1)若,,求的值;(2)若,化简:.18.(12分)已知复数z满足|3+4i|+z=1+3i.(1)求;(2)求的值.19.(12分)已知复数与都是纯虚数,复数,其中i是虚数单位.(1)求复数;(2)若复数z满足,求z.20.(12分)在平面直角坐标系中,直线的参数方程为(为参数),将圆上每一个点的横坐标不变,纵坐标伸长到原来的2倍,得到曲线.(1)求直线的普通方程及曲线的参数方程;(2)设点在直线上,点在曲线上,求的最小值及此时点的直角坐标.21.(12分)设函数.(1)当时,求的极值;(2)当时,证明:.22.(10分)已知曲线的参数方程(为参数),在同一直角坐标系中,将曲线上的点按坐标变换得到曲线.(1)求曲线的普通方程;(2)若点在曲线上,已知点,求直线倾斜角的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】,所以选B.2、D【解题分析】
首先需要根据方程特点构造函数,将方程根的问题转化为函数零点问题,并根据函数的奇偶性判断出函数在上的零点个数,再转化成方程解的问题,最后利用数形结合思想,构造两个函数,转化成求切线斜率问题,从而根据斜率的几何意义得到解.【题目详解】因为函数是偶函数,,所以零点成对出现,依题意,方程有两个不同的正根,又当时,,所以方程可以化为:,即,记,,设直线与图像相切时的切点为,则切线方程为,过点,所以或(舍弃),所以切线的斜率为,由图像可以得.选D.【题目点拨】本题考查函数的奇偶性、函数零点、导数的几何意义,考查函数与方程思想、数形结合思想、转化与化归思想,突显了直观想象、数学抽象、逻辑推理的考查.属中档题.3、A【解题分析】,故选A.4、C【解题分析】由题设,故,应选答案C.5、C【解题分析】
先判断时,在上恒成立;若在上恒成立,转化为在上恒成立.【题目详解】∵,即,(1)当时,,当时,,故当时,在上恒成立;若在上恒成立,即在上恒成立,令,则,当函数单增,当函数单减,故,所以.当时,在上恒成立;综上可知,的取值范围是,故选C.【题目点拨】本题考查分段函数的最值问题,关键利用求导的方法研究函数的单调性,进行综合分析.6、D【解题分析】
根据题意,结合二次函数的性质可得在上为增函数,结合对数的运算性质可得,进而可得,结合函数的单调性分析可得答案.【题目详解】根据题意,函数,是二次函数,其对称轴为y轴,且在上为增函数,,,,则有,则;故选:D.【题目点拨】本题考查函数的奇偶性以及单调性的判定以及应用,涉及对数的运算,属于基础题.7、C【解题分析】
利用多项式乘法将式子展开,根据二项式定理展开式的通项即可求得的系数.【题目详解】根据二项式定理展开式通项为则展开式的通项为则展开式中的项为则展开式中的系数为故选:C【题目点拨】本题考查了二项定理展开式的应用,指定项系数的求法,属于基础题.8、D【解题分析】
写设椭圆1上的点为M(3cosθ,2sinθ),利用点到直线的距离公式,结合三角函数性质能求出椭圆1上的点到直线x+2y﹣4=1的距离取最小值.【题目详解】解:设椭圆1上的点为M(3cosθ,2sinθ),则点M到直线x+2y﹣4=1的距离:d|5sin(θ+α)﹣4|,∴当sin(θ+α)时,椭圆1上的点到直线x+2y﹣4=1的距离取最小值dmin=1.故选D.【题目点拨】本题考查直线与圆的位置关系、椭圆的参数方程以及点到直线的距离、三角函数求最值,属于中档题.9、C【解题分析】分析:根据韦达定理结合三角形面积公式求出的面积,利用椭圆的定义求出三角形的周长,代入内切圆半径,从而可得结果.详解:椭圆的左、右焦点分别为,则的坐标为,过且斜率为的直线为,即,代入,得,则,故的面积,的周长,故的内切圆半径,故选C.点睛:本题主要考查利用椭圆的简单性质与椭圆定义的应用,属于中档题.求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴、椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.10、B【解题分析】
分析:由于,与已知对比可得的值1.详解:由于,与已知对比可得故选B.点睛:本题考查二项式定理的应用,观察分析得到是关键,考查分析与转化的能力,属于中档题.11、A【解题分析】
构造函数,利用导数研究函数的单调性,利用函数为奇函数得出,将不等式转化为,即,利用函数的单调性可求解.【题目详解】构造函数,则,所以,函数在上单调递减,由于函数为奇函数,则,则,,由,得,即,所以,,由于函数在上为单调递减,因此,,故选A.【题目点拨】本题考查利用函数的单调性解函数不等式问题,解决本题的关键在于构造新函数,一般而言,利用构造新函数来解函数不等式的基本步骤如下:(1)根据导数不等式结构构造新函数;(2)对函数求导,确定函数的单调性,必要时分析函数的单调性;(3)将不等式转化为,利用函数的单调性得出与的大小关系.12、C【解题分析】
先利用取特殊值法判断x•y>0时,x>0且y>0不成立,再说明x>0且y>0时,x•y>0成立,即可得到结论.【题目详解】若x=﹣1,y=﹣1,则x•y>0,但x>0且y>0不成立,若x>0且y>0,则x•y>0一定成立,故“x•y>0”是“x>0且y>0”的必要不充分条件故选:C.【题目点拨】本题考查的知识点是充要条件的定义,考查了不等式的性质的应用,考查了逻辑推理能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
先求对立事件概率:三门科目考试成绩都不是A,再根据对立事件概率关系求结果.【题目详解】这位考生三门科目考试成绩都不是A的概率为,所以这位考生至少得1个A的概率为故答案为:【题目点拨】本题考查利用对立事件求概率,考查基本分析求解能力,属基础题.14、【解题分析】
分别取的中点,并连同点顺次连接,六边形就是所求的动点的轨迹,求出面积即可.【题目详解】如下图所示:分别取的中点,并连同点顺次连接,因为是三角形的中位线,所以平面,平面,同理都平行平面,所以就是所求的动点的轨迹,该正六边形的边长为,所以正六边形的面积为:.故答案为【题目点拨】本题考查了直线与平面平行的判定定理的应用,考查了数学运算能力、空间想象能力.15、;【解题分析】
曲线绕坐标原点顺时针旋转,这个变换可分成两个步骤:先是关于直线对称,再关于轴对称得到.【题目详解】绕坐标原点顺时针旋转90°等同于先关于直线翻折,再关于轴翻折,关于直线翻折得到,再关于轴翻折得到.【题目点拨】本题表面考查旋转变换,而实质考查的是两次的轴对称变换,要注意指数函数与同底数的对数函数关于直线对称.16、【解题分析】
设双曲线的标准方程为,利用双曲线的定义求出的值,结合焦距求出的值,从而可得出双曲线的标准方程.【题目详解】设双曲线的标准方程为,由题意知,该双曲线的左、右焦点分别为、,由双曲线的定义可得,,则,因此,双曲线的标准方程为.故答案为:.【题目点拨】本题考查过点求双曲线的方程,在双曲线的焦点已知的前提下,可以利用定义来求双曲线的标准方程,也可以利用待定系数法求解,考查运算求解能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)分别令,,利用二项展开式展开和,将两式相减可得出的值;(2)将代入,求得,当时,,当时,,当时,利用组合数公式可得,化简可得结果.【题目详解】(1),时,令得,令得可得;(2)若,,当时,,当时,,当时,,·····综上,.【题目点拨】该题考查的是有关二项式定理的问题,涉及到的知识点有利用赋值法求对应系数的和,利用组合数公式化简相应的式子,属于中档题目.18、(1);(2)2【解题分析】
(1)先求出为,即可求出,再根据共轭复数的定义即可求出;(2)根据复数的运算法则计算即可得出结论.【题目详解】(1)因为|3+4i|=5,所以z=1+3i-5=-4+3i,所以=-4-3i.(2)===2.【题目点拨】复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.19、(1);(2).【解题分析】
(1)利用纯虚数的定义设出并表示即可求解.(2)代入和,利用复数的四则运算求解即可.【题目详解】(1)设,则由题意得.∴∴(2)∵∴【题目点拨】本题考查复数的代数四则运算,纯虚数的概念等知识,是基础题20、(1)(为参数)(2)【解题分析】
运用消参求出直线的普通方程,解出曲线的普通方程,然后转化为参数方程转化为点到直线的距离,运用参数方程进行求解【题目详解】(1)由得,消元得设为圆上的点,在已知变换下变为上的点,依题意得由,得∴化为参数方程为(为参数)(2)由题意,最小值即椭圆上点到直线距离的最小值设,(其中,)∴,此时,即()∴,∴∴.【题目点拨】本题考查了普通方程与参数方程之间的转化,需要运用公式熟练求解,在求最值问题时运用参量来求解,转化为三角函数的最值问题。21、(1)当,取得极小值;当时,取得极大值;(2)见解析.【解题分析】【试题分析】(1)当时,利用导数写出函数的单调区间,进而求得函数的极值.(2)当时,化简原不等式得,分别利用导数求得左边对应函数的最小值,和右边对应函数的最大值,最小值大于最大值,即可证明原不等式成立.【试题解析】(1)当时,,,当时,,在上单调递减;当时,,在上单调递增;当时,,在上单调递减.所以,当,取得极小值;当时,取得极大值.(2)证明:当时,,,所以不等式可变为.要证明上述不等式成立,即证明.设,则,令,得,在上,,是减函数;在上,,是增函数.所以.令,则,在上,,是增函数;在上,,是减函数,所以,所以,即,即,由此可知.【题目点拨】本小题主要考查函数导数与极值的求法.考查
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心血管疾病甲基化风险评估模型
- 心脏移植供体分配的伦理审查时效性提升
- 心脏基因编辑个体化治疗策略优化
- 心理行为干预在慢病防控中的作用
- 微创治疗脑胶质瘤:超声吸引与神经内镜协同
- 2025年国画装裱施工合同协议
- 建筑工人肌肉骨骼疾病职业培训效果
- 康复治疗师职业健康与患者康复效果及组织承诺的关系
- 康复医学临床带教能力提升方案
- 应急响应时间管理基层优化策略
- 采血后预防淤青的按压方式
- 2025年湖南铁道职业技术学院单招职业技能测试题库带答案
- 2023冷库地面工程技术规程
- 小学一年级加减法口算100道A4直接打印
- 教育学开题报告模板
- 化学品(氩气+二氧化碳混合气)安全技术使用说明书
- 工程管理前沿技术研究
- 2024版七年级下册美术模拟试卷
- 大学生创业设计指导 课件 项目一 路演敲开创业之门
- 羊寄生虫综合防控技术规范
- 2023-2024学年人教部编版统编版九年级上学期历史期末模拟试卷(含答案解析)
评论
0/150
提交评论