




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省济南市锦泽技工学校数学高二第二学期期末质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.方程至少有一个负根的充要条件是A. B. C. D.或2.由曲线,直线及轴所围成的平面图形的面积为()A.6 B.4 C. D.3.已知回归直线的斜率的估计值为1.8,样本点的中心为(4,5),则回归直线方程是()A. B. C. D.4.抛物线的准线方程为()A. B. C. D.5.设z=i(2+i),则=A.1+2i B.–1+2iC.1–2i D.–1–2i6.在中,,,,点满足,则等于()A.10 B.9 C.8 D.77.已知均为实数,若(为虚数单位),则()A.0 B.1 C.2 D.-18.设东、西、南、北四面通往山顶的路各有2、3、3、4条路,只从一面上山,而从任意一面下山的走法最多,应A.从东边上山 B.从西边上山 C.从南边上山 D.从北边上山9.设P,Q分别是圆和椭圆上的点,则P,Q两点间的最大距离是()A. B.C. D.10.、、、、、六名同学站成一排照相,其中、两人相邻的不同排法数是()A.720种 B.360种 C.240种 D.120种11.函数y=2x2–e|x|在[–2,2]的图像大致为()A. B. C. D.12.在中,若,则自然数的值是()A.7 B.8 C.9 D.10二、填空题:本题共4小题,每小题5分,共20分。13.下图三角形数阵为杨辉三角:按照图中排列的规律,第行()从左向右的第3个数为______(用含的多项式表示).14.若圆锥的侧面积为,底面积为,则该圆锥的体积为____________.15.已知复数,则复数______.16.点到直线:的距离等于3,则_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,,曲线在点处的切线平分圆C:的周长.(1)求a的值;(2)讨论函数的图象与直线的交点个数.18.(12分)在如图所示的几何体中,平面平面,四边形和四边形都是正方形,且边长为,是的中点.(1)求证:直线平面;(2)求二面角的大小.19.(12分)已知F1,F2分别为椭圆C:的左焦点.右焦点,椭圆上的点与F1的最大距离等于4,离心率等于,过左焦点F的直线l交椭圆于M,N两点,圆E内切于三角形F2MN;(1)求椭圆的标准方程(2)求圆E半径的最大值20.(12分)从4名男生和2名女生中任选3人参加演讲比赛,设随机变量表示所选3人中女生的人数.(1)求的分布列(结果用数字表示);(2)求所选3个中最多有1名女生的概率.21.(12分)以直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,且在两种坐标系中取相同的长度单位.曲线的极坐标方程是.(Ⅰ)求曲线的直角坐标方程;(Ⅱ)设曲线与轴正半轴及轴正半轴交于点,在第一象限内曲线上任取一点,求四边形面积的最大值.22.(10分)在极坐标系中,O为极点,点在曲线上,直线过点且与垂直,垂足为P(1)当时,求及的极坐标方程(2)当在上运动且点P在线段上时,求点P的轨迹的极坐标方程
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】试题分析:①时,显然方程没有等于零的根.若方程有两异号实根,则;若方程有两个负的实根,则必有.②若时,可得也适合题意.综上知,若方程至少有一个负实根,则.反之,若,则方程至少有一个负的实根,因此,关于的方程至少有一负的实根的充要条件是.故答案为C考点:充要条件,一元二次方程根的分布2、D【解题分析】
先求可积区间,再根据定积分求面积.【题目详解】由,得交点为,所以所求面积为,选D.【题目点拨】本题考查定积分求封闭图形面积,考查基本求解能力,属基本题.3、D【解题分析】
根据回归直线必过样本点的中心可构造方程求得结果.【题目详解】回归直线斜率的估计值为1.8,且回归直线一定经过样本点的中心,,即.故选:.【题目点拨】本题考查回归直线的求解问题,关键是明确回归直线必过样本点的中心,属于基础题.4、D【解题分析】根据题意,抛物线y=4x2的标准方程为x2=,其焦点在y轴正半轴上,且p=,则其准线方程为y=﹣;故选:D.5、D【解题分析】
本题根据复数的乘法运算法则先求得,然后根据共轭复数的概念,写出.【题目详解】,所以,选D.【题目点拨】本题主要考查复数的运算及共轭复数,容易题,注重了基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.6、D【解题分析】
利用已知条件,表示出向量,然后求解向量的数量积.【题目详解】在中,,,,点满足,可得则==【题目点拨】本题考查了向量的数量积运算,关键是利用基向量表示所求向量.7、C【解题分析】
将已知等式整理为,根据复数相等可求得结果.【题目详解】由题意得:,即:则:本题正确选项:【题目点拨】本题考查复数相等的定义,涉及简单的复数运算,属于基础题.8、D【解题分析】从东边上山共种;从西边上山共种;从南边上山共种;从北边上山共种;所以应从北边上山.故选D.9、C【解题分析】
求出椭圆上的点与圆心的最大距离,加上半径,即可得出P,Q两点间的最大距离.【题目详解】圆的圆心为M(0,6),半径为,设,则,即,∴当时,,故的最大值为.故选C.【题目点拨】本题考查了椭圆与圆的综合,圆外任意一点到圆的最大距离是这个点到圆心的距离与圆的半径之和,根据圆外点在椭圆上,即可列出椭圆上一点到圆心的距离的解析式,结合函数最值,即可求得椭圆上一点到圆上一点的最大值.10、C【解题分析】
先把、两人捆绑在一起,然后再与其余四人全排列即可求出、两人相邻的不同排法数.【题目详解】首先把把、两人捆绑在一起,有种不同的排法,最后与其余四人全排列有种不同的排法,根据分步计算原理,、两人相邻的不同排法数是,故本题选C.【题目点拨】本题考查了全排列和分步计算原理,运用捆绑法是解题的关键.11、D【解题分析】试题分析:函数f(x)=2x2–e|x|在[–2,2]上是偶函数,其图象关于y轴对称,因为f(2)=8-e2,0<8-e2<1,所以排除A,B选项;当x∈[0,2]时,y'=4x-ex有一零点,设为12、B【解题分析】
利用二项式的通项公式求出的表达式,最后根据,解方程即可求出自然数的值.【题目详解】二项式的通项公式为:,因此,,所以,解得.故选B.【题目点拨】本题考查了二项式定理的应用,考查了数学运算能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
按照如图排列的规律,第行()从左向右的第3个数分别为,1,3,6,10,15,21,…找到规律及可求出。【题目详解】按照如图排列的规律,第行()从左向右的第3个数分别为,1,3,6,10,15,21,…由于,,,,则第行()从左向右的第3个数为。【题目点拨】本题考查了归纳推理的问题,关键找到规律,属于基础题。14、【解题分析】试题分析:因为,圆锥的侧面积为,底面积为,所以,解得,,所以,该圆锥的体积为.考点:圆锥的几何特征点评:简单题,圆锥之中,要弄清r,h,l之间的关系,熟练掌握面积、体积计算公式.15、【解题分析】
根据共轭复数的表示方法算出即可.【题目详解】由,则,所以故答案为:【题目点拨】本题主要考查共轭复数的概念,属于基础题型.16、或【解题分析】
直接利用点到直线的距离公式列方程,即可得到答案.【题目详解】由题意可得:,解得或.故答案为:或.【题目点拨】本题考查点到直线的距离公式,考查基本运算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)见解析.【解题分析】
(1)求得曲线在点处的切线,根据题意可知圆C的圆心在此切线上,可得a的值.(2)根据得出极值,结合单调区间和函数图像,分类讨论的值和交点个数。【题目详解】(1),∴,,所以曲线在点处的切线方程为由切线平分圆C:的周长可知圆心在切线上,∴,∴(2)由(1)知,,令,解得或当或时,,故在,上为增函数;当时,,故在上为减函数.由此可知,在处取得极大值在处取得极小值大致图像如图:当或时,的图象与直线有一个交点当或时,的图象与直线有两个交点当时,的图象与直线有3个交点.【题目点拨】本题考查利用导数求切线,研究单调区间,考查数形结合思想求解交点个数问题,属于基础题.18、(1)见解析;(2).【解题分析】试题分析:(1)连结交于,根据平行四边形性质得是中点,再根据三角形中位线性质得,最后根据线面平行判定定理得结论,(2)根据条件建立空间直角坐标系,设立各点坐标,利用方程组解各面法向量,根据向量数量积求夹角,最后根据二面角与向量夹角相等或互补关系求二面角.试题解析:(1)∵且,与交于点,与交于点∴平面平面,∴几何体是三棱柱又平面平面,,∴平面,故几何体是直三棱柱(1)四边形和四边形都是正方形,所以且,所以四边形为矩形;于是,连结交于,连结,是中点,又是的中点,故是三角形D的中位线,,注意到在平面外,在平面内,∴直线平面(2)由于平面平面,,∴平面,所以.于是,,两两垂直.以,,所在直线分别为,,轴建立空间直角坐标系,因正方形边长为,且为中点,所以,,,于是,,设平面的法向量为则,解之得,同理可得平面的法向量,∴记二面角的大小为,依题意知,为锐角,,即求二面角的大小为19、(1);(2)【解题分析】
(1)根据椭圆上点与的最大距离和离心率列方程组,解方程组求得的值,进而求得椭圆方程.(2)设出直线的方程,联立直线的方程和椭圆的方程,写出韦达定理,利用与三角形内切圆有关的三角形面积公式列式,求得内切圆半径的表达式,利用换元法结合基本不等式求得圆半径的最大值.【题目详解】由条件知,所以.故椭圆的标准方程为;(2)由条件不为,设交椭圆于,设圆的半径为,由可得,即令,(),则当时,.【题目点拨】本小题主要考查椭圆标准方程的求法,考查直线和椭圆位置关系,考查三角形内切圆半径有关计算,考查换元法和基本不等式求最值,属于中档题.20、(1)见解析;(2).【解题分析】试题分析:(1)由于总共只有2名女生,因此随机变量的取值只能为0,1,2,计算概率为,可写出分布列;(2)显然事件是互斥的,因此.试题解析:(1)由题意知本题是一个超几何分步,随机变量表示所选3人中女生的人数,可能取的值为0,1,2,的分布列为:012(2)由(1)知所选3人中最多有一名女生的概率为:.考点:随机变量分布列,互斥事件的概率.21、(Ⅰ);(Ⅱ).【解题分析】分析:(Ⅰ)把整合成,再利用就可以得到曲线的直角坐标方程;(Ⅱ)因为在椭圆上且在第一象限,故可设,从而所求面积可用的三角函数来表示,求出该函数的最大值即可.详解:(Ⅰ)由题可变形为,∵,,∴,∴.(Ⅱ)由已知有,,设,.于是由,由得,于是,∴四边形最大值.点睛:直角坐标方程转为极坐标方程的关键是利用公式,而极坐标方程转化为直角坐标方程的关键是利用公式,后者也可以把极坐标方程变形尽量产生以便转化.另一方面,当动点在圆锥曲线运动变化时,我们可用一个参数来表示动点坐标,从而利用一元函数求与动点有关的最值问题.22、(1),极
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西方国家的经济政策与政治考量试题及答案
- 教育政策中的公平与效率问题探讨试题及答案
- 探讨西方国家的科技与治理关系试题及答案
- 机电系统集成考题及答案
- 西方国家意识形态的变迁分析试题及答案
- 机电工程加工工艺试题及答案
- 软考网络工程师综合素质试题及答案分析
- 项目收尾与总结阶段试题及答案
- 如何促进政府决策的透明与开放试题及答案
- 社会保障政策考试试题及答案
- 国际档案日宣传教育课件(带内容)
- 基于PLC的药房取药系统设计
- 安徽省汽车维修行业车辆维修合同
- GB/T 16447-2004烟草及烟草制品调节和测试的大气环境
- 公司劳务派遣人员工资薪酬发放暂行规定
- 建筑大师伊东丰雄简介及作品集课件
- 公司二次经营创效管理实施细则
- BRCGS食品安全全球标准第9版全套程序文件
- 2023年福建省高一数学竞赛试题参考答案
- 2023年最新的马季吹牛相声台词
- 一年级英语下册素材-Unit 1 Lets count!课文翻译 译林版(一起)
评论
0/150
提交评论