2024届湖南省浏阳二中、五中、六中三校数学高二下期末经典模拟试题含解析_第1页
2024届湖南省浏阳二中、五中、六中三校数学高二下期末经典模拟试题含解析_第2页
2024届湖南省浏阳二中、五中、六中三校数学高二下期末经典模拟试题含解析_第3页
2024届湖南省浏阳二中、五中、六中三校数学高二下期末经典模拟试题含解析_第4页
2024届湖南省浏阳二中、五中、六中三校数学高二下期末经典模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省浏阳二中、五中、六中三校数学高二下期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.球面上有三个点,其中任意两点的球面距离都等于大圆周长的,经过这3个点的小圆周长为,那么这个球的半径为()A. B. C. D.2.在去年的足球甲联赛上,一队每场比赛平均失球数是1.5,全年比赛失球个数的标准差为1.1;二队每场比赛平均失球数是2.1,全年失球个数的标准差是0.4,你认为下列说法中正确的个数有()①平均来说一队比二队防守技术好;②二队比一队防守技术水平更稳定;③一队防守有时表现很差,有时表现又非常好;④二队很少不失球.A.1个 B.2个 C.3个 D.4个3.设函数在R上可导,其导函数为,且函数的图像如题(8)图所示,则下列结论中一定成立的是A.函数有极大值和极小值B.函数有极大值和极小值C.函数有极大值和极小值D.函数有极大值和极小值4.若函数存在单调递增区间,则实数的值可以为()A. B. C. D.5.如图,是正四面体的面上一点,点到平面距离与到点的距离相等,则动点的轨迹是()A.直线 B.抛物线C.离心率为的椭圆 D.离心率为3的双曲线6.某个班级组织元旦晚会,一共准备了、、、、、六个节目,节目演出顺序第一个节目只能排或,最后一个节目不能排,且、要求相邻出场,则不同的节目顺序共有()种A.72 B.84 C.96 D.1207.已知函数,与的图象上存在关于轴对称的点,则实数的取值范围是()A. B. C. D.8.执行下面的程序框图,若输出的结果为,则判断框中的条件是()A. B. C. D.9.若某几何体的三视图如图所示,则此几何体的体积等于()A.24 B.30 C.10 D.6010.设,为的展开式的第一项(为自然对数的底数),,若任取,则满足的概率是()A. B. C. D.11.设,随机变量的分布列如图,则当在内增大时,()A.减小 B.增大C.先减小后增大 D.先增大后减小12.设命题:,;命题:若,则,则下列命题为真命题的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.复数(是虚数单位)的虚部为______.14.已知函数的最小正周期为,则当时函数的一个零点是________15.设实数x,y满足,则的最小值为___________.16.在的展开式中的所有的整数次幂项的系数之和为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(Ⅰ)求函数的最大值;(Ⅱ)已知,求证.18.(12分)2018年11月21日,意大利奢侈品牌“”在广告中涉嫌辱华,中国明星纷纷站出来抵制该品牌,随后京东、天猫、唯品会等中国电商平台全线下架了该品牌商品,当天有大量网友关注此事件,某网上论坛从关注此事件跟帖中,随机抽取了100名网友进行调查统计,先分别统计他们在跟帖中的留言条数,再把网友人数按留言条数分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到如图所示的频率分布直方图;并将其中留言不低于40条的规定为“强烈关注”,否则为“一般关注”,对这100名网友进一步统计得到列联表的部分数据如表.(1)根据如图所示的频率分布直方图,求网友留言条数的中位数;(2)在答题卡上补全列联表中数据;(3)判断能否有的把握认为网友对此事件是否为“强烈关注”与性别有关?一般关注强烈关注合计男45女1055合计100参考公式及数据:0.050.0250.0100.0053.8415.0246.6357.87919.(12分)选修4-4:坐标系与参数方程:在直角坐标系中,曲线(为参数),以坐标原点为极点,以轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程;(2)已知点,直线的极坐标方程为,它与曲线的交点为,,与曲线的交点为,求的面积.20.(12分)设函数.(1)当时,解不等式;(2)若关于的不等式恒成立,求实数的取值范围.21.(12分)已知在上有意义,单调递增且满足.(1)求证:;(2)求的值;(3)求不等式的的解集22.(10分)某保险公司拟推出某种意外伤害险,每位参保人交付元参保费,出险时可获得万元的赔付,已知一年中的出险率为,现有人参保.(1)求保险公司获利在(单位:万元)范围内的概率(结果保留小数点后三位);(2)求保险公司亏本的概率.(结果保留小数点后三位)附:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

解:2、D【解题分析】在(1)中,一队每场比赛平均失球数是1.5,二队每场比赛平均失球数是2.1,

∴平均说来一队比二队防守技术好,故(1)正确;

在(2)中,一队全年比赛失球个数的标准差为1.1,二队全年比赛失球个数的标准差为0.4,

∴二队比一队技术水平更稳定,故(2)正确;

在(3)中,一队全年比赛失球个数的标准差为1.1,二队全年比赛失球个数的标准差为0.4,

∴一队有时表现很差,有时表现又非常好,故(3)正确;

在(4)中,二队每场比赛平均失球数是2.1,全年比赛失球个数的标准差为0.4,

∴二队很少不失球,故(4)正确.故选:D.3、D【解题分析】

则函数增;则函数减;则函数减;则函数增;选D.【考点定位】判断函数的单调性一般利用导函数的符号,当导函数大于0则函数递增,当导函数小于0则函数递减4、D【解题分析】

根据题意可知有解,再根据二次函数的性质分析即可.【题目详解】由题,若函数存在单调递增区间,则有解.当时显然有解.当时,,解得.因为四个选项中仅.故选:D【题目点拨】本题主要考查了利用导数分析函数单调区间的问题,需要判断出导数大于0有解,利用二次函数的判别式进行求解.属于中档题.5、C【解题分析】分析:由题设条件将点P到平面ABC距离与到点V的距离相等转化成在面VBC中点P到V的距离与到定直线BC的距离比是一个常数,依据圆锥曲线的第二定义判断出其轨迹的形状.详解:∵正四面体V﹣ABC∴面VBC不垂直面ABC,过P作PD⊥面ABC于D,过D作DH⊥BC于H,连接PH,可得BC⊥面DPH,所以BC⊥PH,故∠PHD为二面角V﹣BC﹣A的平面角令其为θ则Rt△PGH中,|PD|:|PH|=sinθ(θ为V﹣BC﹣A的二面角的大小).又点P到平面ABC距离与到点V的距离相等,即|PV|=|PD|∴|PV|:|PH|=sinθ<1,即在平面VBC中,点P到定点V的距离与定直线BC的距离之比是一个常数sinθ,又在正四面体V﹣ABC,V﹣BC﹣A的二面角的大小θ有:sinθ=<1,由椭圆定义知P点轨迹为椭圆在面SBC内的一部分.故答案为:C.点睛:(1)本题主要考查二面角、椭圆的定义、轨迹方程等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.(2)解答本题的关键是联想到圆锥曲线的第二定义.6、B【解题分析】分析:先排第一个节目,同时把C、D捆绑在一起作为一个元素,按第一个节目排A还是排B分类,如果第一个是B,则第二步排最后一个节目,如果第一个是A,则后面全排列即可.详解:由题意不同节目顺序有.故选B.点睛:本题考查了排列、组合题两种基本方法(1)限制元素(位置)优先法:①元素优先法:先考虑有限制条件的元素,再考虑其他元素;②位置优先法:先考虑有限制条件的位置,再考虑其他位置.(2)相邻问题捆绑法:把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”作全排列,最后再“松绑”——将“捆绑”元素在这些位置上作全排列.7、A【解题分析】

根据题意,可以将原问题转化为方程在区间上有解,构造函数,利用导数分析的最大最小值,可得的值域,进而分析方程在区间上有解,必有,解之可得实数的取值范围.【题目详解】根据题意,若函数,与的图象上存在关于轴对称的点,则方程在区间上有解化简可得设,对其求导又由,在有唯一的极值点分析可得:当时,,为减函数,当时,,为增函数,故函数有最小值又由,比较可得,,故函数有最大值故函数在区间上的值域为若方程在区间有解,必有,则有则实数的取值范围是故选:A【题目点拨】本题考查在函数与方程思想下利用导数求最值进而表示参数取值范围问题,属于难题.8、C【解题分析】

根据已知的程序语句可得,该程序的功能是利用循环结构计算并输出变量的值,模拟程序的运行过程,即可得出答案.【题目详解】解:当时,不满足输出结果为,进行循环后,,;当时,不满足输出结果为,进行循环后,,;当时,不满足输出结果为,进行循环后,,;当时,不满足输出结果为,进行循环后,,;当时,不满足输出结果为,进行循环后,,;当时,满足输出结果为,故进行循环的条件,应为:.故选:C.【题目点拨】本题考查程序框图的应用,属于基础题.9、A【解题分析】

根据几何体的三视图得出该几何体是三棱柱去掉一个三棱锥所得的几何体,结合三视图的数据,求出它的体积.【题目详解】根据几何体的三视图,得该几何体是三棱柱截去一个三棱锥后所剩几何体几何体是底面为边长为3,4,5的三角形,高为5的三棱柱被平面截得的,如图所示:由题意:原三棱柱体积为:V截掉的三棱锥体积为:V所以该几何体的体积为:V=本题正确选项:A【题目点拨】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.10、D【解题分析】分析:由已知求得m,画出A表示的平面区域和满足ab>1表示的平面区域,求出对应的面积比即可得答案.详解:由题意,s=,∴m==,则A={(x,y)|0<x<m,0<y<1}={(x,y)|0<x<e,0<y<1},画出A={(x,y)|0<x<e,0<y<1}表示的平面区域,任取(a,b)∈A,则满足ab>1的平面区域为图中阴影部分,如图所示:计算阴影部分的面积为S阴影==(x﹣lnx)=e﹣1﹣lne+ln1=e﹣1.所求的概率为P=,故答案为:D.点睛:(1)本题主要考查几何概型,考查定积分和二项式定理,意在考查学生对这些知识的掌握水平和分析推理能力.(1)解答本题的关键是利用定积分求阴影部分的面积.11、D【解题分析】

先求数学期望,再求方差,最后根据方差函数确定单调性.【题目详解】,,,∴先增后减,因此选D.【题目点拨】12、D【解题分析】分析:先判断命题的真假,进而根据复合命题真假的真值表,可得结论.详解:因为成立,所以,不存在,,故命题为假命题,为真命题;当时,成立,但不成立,故命题为假命题,为真命题;故命题均为假命题,命题为真命题,故选D.点睛:本题通过判断或命题、且命题以及非命题的真假,综合考查不等式的性质以及特称命题的定义,属于中档题.解答非命题、且命题与或命题真假有关的题型时,应注意:(1)原命题与其非命题真假相反;(2)或命题“一真则真”;(3)且命题“一假则假”.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】

先将复数化简,再求虚部即可【题目详解】,所以复数的虚部为:1故答案为1【题目点拨】本题考查复数的基本概念,在复数中,实部为,虚部为,属于基础题14、【解题分析】

本题可以先对函数进行化简,然后通过最小正周期得出的值,最后得出零点。【题目详解】因为最小正周期为所以所以当时函数的一个零点是。【题目点拨】本题的计算是要注意未知数的取值范围以及题目给出的定义域。15、【解题分析】

由题意画出可行域,令,转化目标函数为,数形结合即可得解.【题目详解】由题意画出可行域,如图,令,则,数形结合可知,当直线过点A时,取最小值,由可得点,所以.故答案为:.【题目点拨】本题考查了简单的线性规划,属于基础题.16、122【解题分析】分析:根据二项式定理的通项公式,写出所有的整数次幂项的系数,再求和即可。详解:所以整数次幂项为为整数是,所以系数之和为122点睛:项式定理中的具体某一项时,写出通项的表达式,使其满足题目设置的条件。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2)证明见解析.【解题分析】分析:(Ⅰ)先求导,再利用导数求函数的单调区间,再求函数的最大值.(Ⅱ)利用分析法证明,先转化成证明再构造函数,再求证函数.详解:(I)因为,所以当时;当时,则在单调递增,在单调递减.所以的最大值为.(II)由得,,则,又因为,有,构造函数则,当时,,可得在单调递增,有,所以有.点睛:(1)本题主要考查利用导数求函数的单调区间和最值,考查利用导数证明不等式,意在考查学生对这些知识的掌握水平和分析推理转化能力.(2)解答本题的关键有两点,其一是先转化成证明其二构造函数,再求证函数.18、(1)32(2)见解析;(3)见解析【解题分析】

(1)根据频率分布直方图和中位数定义计算可得答案;(2)根据频率分布直方图得,可得列表联中缺失的数据,可得答案;(3)由(2)中的列联表中数据,及,可得的值,对比题中数据可得答案.【题目详解】解:(1)依题意,,所以网友留言条数的中位数为(2)根据频率分布直方图得,网友强烈关注的频率为,所以强烈关注的人数为,因为强烈关注的女行有10人,所以强烈关注的男性有15人,所以一般关注的男性有人,一般关注的女性有人,所以列联表如下:一般关注强烈关注合计男301545女451055合计7525100(3)由(2)中的列联表中数据可得:所以没有的把握认为网友对此事件是否为“强烈关注”与性别有关.【题目点拨】本题主要考察古典概型、数据统计及独立性检测,相对简单,注意运算准确.19、(1)(2)【解题分析】

(1)首先把参数方程转化为普通方程,利用普通方程与极坐标方程互化的公式即可得到曲线的极坐标方程;(2)分别联立与的极坐标方程、与的极坐标方程,得到、两点的极坐标,即可求出的长,再计算出到直线的距离,由此即可得到的面积.【题目详解】解:(1),其普通方程为,化为极坐标方程为(2)联立与的极坐标方程:,解得点极坐标为联立与的极坐标方程:,解得点极坐标为,所以,又点到直线的距离,故的面积.【题目点拨】本题考查参数方程、普通方程、极坐标方程的互化,利用极径的几何意义求三角形面积是解题的关键,属于中档题.20、(1);(2)或【解题分析】

(1)根据题意得到,分,,三种情况讨论,即可得出结果;(2)先由关于的不等式恒成立,得到恒成立,结合绝对值不等式的性质,即可求出结果.【题目详解】(1)当时,即为,当时,,解得;当时,,可得;当时,,解得,综上,原不等式的解集为;(2)关于的不等式恒成立,即为恒成立,由,可得,解得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论