




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省淮北师大附中2024届高二数学第二学期期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题“对任意的,,”的否定是()A.不存在, B.不存在,C.存在, D.存在,2.若,则等于()A.9 B.8 C.7 D.63.下面推理过程中使用了类比推理方法,其中推理正确的是()A.平面内的三条直线a,b,c,若a⊥c,b⊥c,则a//b.类比推出:空间中的三条直线a,b,c,若a⊥c,b⊥c,则a//bB.平面内的三条直线a,b,c,若a//c,b//c,则a//b.类比推出:空间中的三条向量a,b,cC.在平面内,若两个正三角形的边长的比为12,则它们的面积比为14.类比推出:在空间中,若两个正四面体的棱长的比为1D.若a,b,c,d∈R,则复数a+bi=c+di⇒a=c,b=d.类比推理:“若a,b,c,d∈Q,则a+b24.在区间[0,2]上随机取两个数x,y,则xy∈[0,2]的概率是().A.1-ln22B.3-2ln5.已知双曲线的左右焦点分别为,,以线段为直径的圆与双曲线在第二象限的交点为,若直线与圆相切,则双曲线的渐近线方程是()A. B. C. D.6.在中,,则角为()A. B. C. D.7.有一项活动,在4名男生和3名女生中选2人参加,必须有男生参加的选法有()种.A.18 B.20 C.24 D.308.在的展开式中,的系数为()A.-120 B.120 C.-15 D.159.已知复数(为虚数单位),则()A. B. C. D.10.知,,,则,,的大小关系为()A. B. C. D.11.如图,在正方体中,E为线段的中点,则异面直线DE与所成角的大小为()A. B. C. D.12.对于复数,给出下列三个运算式子:(1),(2),(3).其中正确的个数是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.总决赛采用7场4胜制,2018年总决赛两支球队分别为勇士和骑士,假设每场比赛勇士获胜的概率为0.7,骑士获胜的概率为0.3,且每场比赛的结果相互独立,则恰好5场比赛决出总冠军的概率为__________.14.若存在过点1,0的直线与曲线y=x3和y=ax2+15.命题“”的否定是__________.16.已知数列的前项和公式为,则数列的通项公式为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,且满足.(1)求角B的大小;(2)若,且,,求18.(12分)已知函数.(1)讨论函数的单调性;(2)当时,求的取值范围.19.(12分)已知函数,.(Ⅰ)求过原点,且与函数图象相切的切线方程;(Ⅱ)求证:当时,.20.(12分)某大学“统计初步”课程的教师随机调查了选该课程的一些学生的情况,具体数据如下表:非统计专业统计专业合计男8436120女324880合计11684200(1)能否在犯错误的概率不超过0.005的前提下认为“修统计专业与性别有关系”?(2)用分层抽样方法在上述80名女生中按照“非统计专业”与“统计专业”随机抽取10名,再从抽到的这10名女生中抽取2人,记抽到“统计专业”的人数为,求随机变量的分布列和数学期望.参考公式:,其中;临界值表:0.1500.1000.0500.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82821.(12分)如图,圆锥的顶点是S,底面中心为O,OC是与底面直径AB垂直的一条半径,D是母线SC的中点.设圆往的高为4,异面直线AD与BC所成角为,求圆锥的体积;当圆锥的高和底面半径是中的值时,求二面角的大小.22.(10分)2017年5月14日,第一届“一带一路”国际高峰论坛在北京举行,为了解不同年龄的人对“一带一路”关注程度,某机构随机抽取了年龄在15-75岁之间的100人进行调查,经统计“青少年”与“中老年”的人数之比为.关注不关注合计青少年15中老年合计5050100(1)根据已知条件完成上面的列联表,并判断能否有99%的把握认为关注“一带一路”是否和年龄段有关?(2)现从抽取的青少年中采用分层抽样的办法选取9人进行问卷调查.在这9人中再选取3人进行面对面询问,记选取的3人中关注“一带一路”的人数为X,求X的分布列及数学期望.附:参考公式,其中.临界值表:0.050.0100.0013.8416.63510.828
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
已知命题为全称命题,则其否定应为特称命题,直接写出即可.【题目详解】命题“对任意的”是全称命题,它的否定是将量词的任意的实数变为存在,再将不等号变为即可.即得到:存在.故选:C.【题目点拨】本题主要考查全称命题的否定,注意量词和不等号的变化,属于简单题.2、B【解题分析】分析:根据组合数的计算公式,即可求解答案.详解:由题意且,,解得,故选B.点睛:本题主要考查了组合数的计算公式的应用,其中熟记组合数的计算公式是解答的关键,着重考查了推理与计算能力.3、D【解题分析】
对四个答案中类比所得的结论逐一进行判断,即可得到答案【题目详解】对于A,空间中,三条直线a,b,c,若a⊥c,对于B,若b=0,则若a//b对于C,在平面上,正三角形的面积比是边长比的平方,类比推出在空间中,正四面体的体积是棱长比的立方,棱长比为12,则它们的体积比为1对于D,在有理数Q中,由a+b2=c+d2可得,b=d,故正确综上所述,故选D【题目点拨】本题考查的知识点是类比推理,解题的关键是逐一判断命题的真假,属于基础题.4、C【解题分析】试题分析:由题意所有的基本事件满足0≤x≤20≤y≤2,所研究的事件满足0≤y≤2x,画出可行域如图,总的区域面积是一个边长为2的正方形,其面积为4,满足0≤y≤2x的区域的面积为考点:几何概型5、B【解题分析】
先设直线与圆相切于点,根据题意,得到,再由,根据勾股定理求出,从而可得渐近线方程.【题目详解】设直线与圆相切于点,因为是以圆的直径为斜边的圆内接三角形,所以,又因为圆与直线的切点为,所以,又,所以,因此,因此有,所以,因此渐近线的方程为.故选B【题目点拨】本题主要考查双曲线的渐近线方程,熟记双曲线的简单性质即可,属于常考题型.6、D【解题分析】
利用余弦定理解出即可.【题目详解】【题目点拨】本题考查余弦定理的基本应用,属于基础题.7、A【解题分析】
分类:(1)人中有人是男生;(2)人都是男生.【题目详解】若人中有人是男生,则有种;若人都是男生,则有种;则共有种选法.【题目点拨】排列组合中,首先对于两个基本原理:分类加法、分步乘法,要能充分理解,它是后面解答排列组合综合问题的基础.8、C【解题分析】
写出展开式的通项公式,令,即,则可求系数.【题目详解】的展开式的通项公式为,令,即时,系数为.故选C【题目点拨】本题考查二项式展开的通项公式,属基础题.9、D【解题分析】分析:化简复,利用复数模的公式求解即可.详解:因为,所以=,故选D.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.10、A【解题分析】由题易知:,∴故选A点睛:利用指数函数对数函数及幂函数的性质比较实数或式子的大小,一方面要比较两个实数或式子形式的异同,底数相同,考虑指数函数增减性,指数相同考虑幂函数的增减性,当都不相同时,考虑分析数或式子的大致范围,来进行比较大小,另一方面注意特殊值的应用,有时候要借助其“桥梁”作用,来比较大小.11、B【解题分析】
建立空间直角坐标系,先求得向量的夹角的余弦值,即可得到异面直线所成角的余弦值,得到答案.【题目详解】分别以所在的直线为建立空间直角坐标系,设正方体的棱长为2,可得,所以,所以,所以异面直线和所成的角的余弦值为,所以异面直线和所成的角为,故选B.【题目点拨】本题主要考查了异面直线所成角的求解,其中解答中建立适当的空间直角坐标系,利用向量的夹角公式求解是解答的关键,着重考查了推理与运算能力,属于基础题.12、D【解题分析】分析:根据复数的几何意义可得(1)正确;根据复数模的公式计算可得到(2)正确;根据复数乘法运算法则可判断(3)正确,从而可得结果.详解:根据复数的几何意义,由三角形两边之和大于第三边可得,(1)正确;设,则,,(2)正确;根据复数乘法的运算法则可知,(3)正确,即正确命题的个数是,故选D.点睛:本题主要考查复数模的公式、复数的几何意义、复数乘法的运算法则,意在考查基础知识掌握的熟练程度,以及综合运用所学知识解决问题的能力,属于难题.二、填空题:本题共4小题,每小题5分,共20分。13、0.3108【解题分析】分析:设“勇士以比分4:1获胜”为事件,“第场比赛取胜”记作事件,由能求出勇士队以比分4:1获胜的概率.设“骑士以比分4:1获胜”为事件,“第场比赛取胜”记作事件,由能求出骑士队以比分4:1获胜的概率.则恰好5场比赛决出总冠军的概率为.详解:设“勇士以比分4:1获胜”为事件,“第场比赛取胜”记作事件,由能求出勇士队以比分4:1获胜的概率.则设“骑士以比分4:1获胜”为事件,“第场比赛取胜”记作事件,由能求出骑士队以比分4:1获胜的概率.则则恰好5场比赛决出总冠军的概率为即答案为0.3108.点睛:本题主要考查了次独立重复试验中恰好发生次的概率,同时考查了分析问题的能力和计算能力,属于中档题.14、-1或-【解题分析】分析:先求出过点1,0和y=x2详解:设直线与曲线y=x2的切点坐标为则函数的导数为f'x则切线斜率k=3x则切线方程为y-x∵切线过点1,0,∴-x即2x解得x0=0或①若x0=0,此时切线的方程为此时直线与y=ax2即ax则Δ=1542②若x0=32代入y=ax2+消去y可得ax又由Δ=0,即9+4×9解可得a=-1,故a=-1或a=-2564,故答案为-1或点睛:应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1)已知切点Ax0,fx0求斜率k,即求该点处的导数k=f'x0;(2)己知斜率k求切点Ax1,fx1,即解方程15、【解题分析】
利用全称命题的否定可得出答案.【题目详解】由全称命题的否定可知,命题“”的否定是“,”,故答案为“,”.【题目点拨】本题考查全称命题的否定,熟记全称命题与特称命题的否定形式是解本题的关键,属于基础题.16、【解题分析】
由,可得当时的数列的通项公式,验证时是否符合即可.【题目详解】当时,,
当时,,经验证当时,上式也适合,故此数列的通项公式为,故答案为.【题目点拨】本题主要考查数列的通项公式与前项和公式之间的关系,属于中档题.已知数列前项和,求数列通项公式,常用公式,将所给条件化为关于前项和的递推关系或是关于第项的递推关系,若满足等比数列或等差数列定义,用等比数列或等差数列通项公式求出数列的通项公式,否则适当变形构造等比或等数列求通项公式.在利用与通项的关系求的过程中,一定要注意的情况.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)根据正弦定理即可得角A(2)根据余弦定理以及两角和与差的余弦即可得.【题目详解】解:(1)在△ABC中,由,根据正弦定理得:,∵(A为锐角),∴.∴由B为锐角,可得.(2)∵,①,∴利用余弦定理:,可得:,解得:,②∴由①②联立即可解得:,或(由,舍去),∴,,,,∴.【题目点拨】本题主要考查了解三角形的相关问题,在解决此类问题时通常结合正弦定理、余弦定理、以及两角和与差的余弦、正弦即可解决.18、(1)见解析;(2)【解题分析】
(1)对求导并因式分解,对分成四种情况,讨论函数的单调性.(2)先将函数解析式转化为,当时,,符合题意.当时,由分离常数得到,构造函数,利用导数求得的值域,由此求得的取值范围.【题目详解】解:(1),①当时,,令得,可得函数的增区间为,减区间为.②当时,由,当时,;当时,,故,此时函数在上单调递增,增区间为,没有减区间.③当时,令得或,此时函数的增区间为,,减区间为.④当时,令得:或,此时函数的增区间为,,减区间为.(2)由①当时,,符合题意;②当时,若,有,得令,有,故函数为增函数,,故,由上知实数的取值范围为.【题目点拨】本小题主要考查利用导数研究函数的单调性,考查利用导数研究不等式恒成立问题,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,综合性很强,属于难题.19、(Ⅰ);(Ⅱ)证明见解析.【解题分析】分析:(1)设出切点,求导,得到切线斜率,由点斜式得到切线方程;(2)先证得,再证即可,其中证明过程,均采用构造函数,求导研究单调性,求得最值大于0即可.详解:(Ⅰ)设切点,则,,,切线方程为:,即:,将原点带入得:,,切线方程为:.(Ⅱ)设,,,则.当时,,当时,,则,所以,即:,.设,,,,,当时,,当时,,则,所以,即:,,所以.点睛:利用导数证明不等式常见类型及解题策略(1)构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.20、(1)能在犯错误的概率不超过0.005的前提下认为“修统计专业与性别有关系”.详见解析(2)见解析【解题分析】
(1)根据公式计算,与临界值表作比较得到答案.(2)根据分层抽样计算“非统计专业”与“统计专业”人数,计算各种情况的概率,列出分布列,求数学期望.【题目详解】解:(1)根据表中数据,计算,因为所以能在犯错误的概率不超过0.005的前提下认为“修统计专业与性别有关系”.(2)用分层抽样方法在上述80名女生中按照“非统计专业”与“统计专业”随机抽取10名,那么抽
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 明晰2025乐理考试的主要考核方向与目标导向试题及答案
- 能量守恒定律在实验中的应用试题及答案
- 自主品牌电动汽车市场考题试题及答案
- 文化产业区域协同发展背景下粤港澳大湾区资源整合与产业升级报告
- 电磁波与材料的关系试题及答案
- 母儿血型不合试题及答案
- 寻找答案大学化学考试试题及答案
- 吉林省通化市重点名校2025届中考考前模拟考试物理试题理试题含解析
- 电子行为与电场强度关系试题及答案
- 辽宁省葫芦岛重点中学2024-2025学年初三1月阶段性测试英语试题理试题含答案
- 幸福心理学智慧树知到期末考试答案章节答案2024年浙江大学
- 个人工劳务分包合同
- 5月8日世界微笑日微笑的力量生活中保持微笑宣传课件
- 2024年四川省自然资源投资集团有限责任公司招聘笔试参考题库附带答案详解
- 2022智慧健康养老服务与管理专业人才培养调研报告
- 酒店网评分提升方案
- 石油化工设备维护检修规程设备完好标准SHS010012004-副本
- 妊娠合并垂体侏儒的护理查房
- 厨房消防安全培训课件
- 全国工会财务知识竞赛题库及答案
- 保险学(第五版)课件 魏华林 第9、10章 再保险、保险经营导论
评论
0/150
提交评论