江西省九江同文中学2024届数学高二第二学期期末调研模拟试题含解析_第1页
江西省九江同文中学2024届数学高二第二学期期末调研模拟试题含解析_第2页
江西省九江同文中学2024届数学高二第二学期期末调研模拟试题含解析_第3页
江西省九江同文中学2024届数学高二第二学期期末调研模拟试题含解析_第4页
江西省九江同文中学2024届数学高二第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省九江同文中学2024届数学高二第二学期期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,将其图象向右平移个单位长度后得到函数的图象,若函数为偶函数,则的最小值为()A. B. C. D.2.已知数列的前项和为,,则“”是“数列是等比数列”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.设平面向量,则与垂直的向量可以是()A. B. C. D.4.设,为两条不同的直线,,为两个不同的平面,则()A.若,,则 B.若,,则C.若,,则 D.若,,则5.以下说法中正确个数是()①用反证法证明命题“三角形的内角中至多有一个钝角”的反设是“三角形的三个内角中至少有一个钝角”;②欲证不等式成立,只需证;③用数学归纳法证明(,,在验证成立时,左边所得项为;④命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是使用了“三段论”,但小前提使用错误.A. B. C. D.6.已知函数的最小正周期是,若其图像向右平移个单位后得到的函数为奇函数,则函数的图像()A.关于点对称 B.关于直线对称C.关于点对称 D.关于直线对称7.设函数的极小值为,则下列判断正确的是A. B.C. D.8.设变量x,y满足约束条件,则目标函数的最大值为()A.4 B.6 C.8 D.109.曲线y=ex在A处的切线与直线x﹣y+1=0平行,则点A的坐标为()A.(﹣1,e﹣1) B.(0,1) C.(1,e) D.(0,2)10.对四组数据进行统计,获得如图所示的散点图,关于其相关系数的比较,正确的是()A.r2<r4<0<r3<r1 B.r4<r2<0<r1<r3C.r4<r2<0<r3<r1 D.r2<r4<0<r1<r311.若均为第二象限角,满足,,则()A. B. C. D.12.点M的极坐标(4,A.(4,π3) B.(4二、填空题:本题共4小题,每小题5分,共20分。13.已知高为H的正三棱锥P-ABC的每个顶点都在半径为R的球O的球面上,若二面角P-AB-C的正切值为4,则HR=14.设函数,,则函数的递减区间是________.15.下表是某厂1~4月份用水量(单位:百吨)的一组数据:月份1234用水量4.5432.5由散点图可知,用水量与月份之间有较好的线性相关关系,其线性回归直线方程是,则等于___16.某校毕业典礼由6个节目组成,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起,则该校毕业典礼节目演出顺序的编排方案共有______种.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等差数列不是常数列,其前四项和为10,且、、成等比数列.(1)求通项公式;(2)设,求数列的前项和.18.(12分)已知曲线的极坐标方程是.以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是(为参数).(Ⅰ)将曲线的极坐标方程化为直角坐标方程;(Ⅱ)若直线与曲线相交于,两点,且,求直线的倾斜角的值.19.(12分)在二项式的展开式中,二项式系数之和为256,求展开式中所有有理项.20.(12分)是指悬浮在空气中的空气动力学当量直径小于或等于微米的颗粒物,也称为可入肺颗粒物.根据现行国家标准,日均值在微克/立方米以下,空气质量为一级;在微克应立方米微克立方米之间,空气质量为二级:在微克/立方米以上,空气质量为超标.从某市年全年每天的监测数据中随机地抽取天的数据作为样本,监测值频数如下表:日均值(微克/立方米)频数(天)(1)从这天的日均值监测数据中,随机抽出天,求恰有天空气质量达到一级的概率;(2)从这天的数据中任取天数据,记表示抽到监测数据超标的天数,求的分布列.21.(12分)已知函数.(1)求曲线在处的切线方程;(2)若方程恰有两个实数根,求a的值.22.(10分)如图,,是经过小城的东西方向与南北方向的两条公路,小城位于小城的东北方向,直线距离.现规划经过小城修建公路(,分别在与上),与,围成三角形区域.(1)设,,求三角形区域周长的函数解析式;(2)现计划开发周长最短的三角形区域,求该开发区域的面积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

由平移变换得到,由偶函数的性质得到,从而求.【题目详解】由题意得:,因为为偶函数,所以函数的图象关于对称,所以当时,函数取得最大值或最小值,所以,所以,解得:,因为,所以当时,,故选B.【题目点拨】平移变换、伸缩变换都是针对自变量而言的,所以函数向右平移个单位长度后得到函数,不能错误地得到.2、C【解题分析】

先令,求出,再由时,根据,求出,结合充分条件与必要条件的概念,即可得出结果.【题目详解】解:当时,,当时,时,,,数列是等比数列;当数列是等比数列时,,,,所以,是充分必要条件。故选C【题目点拨】本题主要考查充分必要条件的判定,熟记概念,以及数列的递推公式即可求解,属于常考题型.3、D【解题分析】分析:先由平面向量的加法运算和数乘运算得到,再利用数量积为0进行判定.详解:由题意,得,因为,,,,故选D.点睛:本题考查平面向量的坐标运算、平面向量垂直的判定等知识,意在考查学生的逻辑思维能力和基本计算能力.4、C【解题分析】

根据空间线面关系、面面关系及其平行、垂直的性质定理进行判断.【题目详解】对于A选项,若,,则与平行、相交、异面都可以,位置关系不确定;对于B选项,若,且,,,根据直线与平面平行的判定定理知,,,但与不平行;对于C选项,若,,在平面内可找到两条相交直线、使得,,于是可得出,,根据直线与平面垂直的判定定理可得;对于D选项,若,在平面内可找到一条直线与两平面的交线垂直,根据平面与平面垂直的性质定理得知,只有当时,才与平面垂直.故选C.【题目点拨】本题考查空间线面关系以及面面关系有关命题的判断,判断时要根据空间线面、面面平行与垂直的判定与性质定理来进行,考查逻辑推理能力,属于中等题.5、B【解题分析】

①根据“至多有一个”的反设为“至少有两个”判断即可。②不等式两边平方,要看正负号,同为正不等式不变号,同为负不等式变号。③令代入左式即可判断。④整数并不属于大前提中的“有些有理数”【题目详解】命题“三角形的内角中至多有一个钝角”的反设是“三角形的三个内角中至少有两个钝角”;①错欲证不等式成立,因为,故只需证,②错(,,当时,左边所得项为;③正确命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是使用了“三段论”,小前提使用错误.④正确综上所述:①②错③④正确故选B【题目点拨】本题考查推理论证,属于基础题。6、D【解题分析】

由最小正周期为可得,平移后的函数为,利用奇偶性得到,即可得到,则,进而判断其对称性即可【题目详解】由题,因为最小正周期为,所以,则平移后的图像的解析式为,此时函数是奇函数,所以,则,因为,当时,,所以,令,则,即对称点为;令,则对称轴为,当时,,故选:D【题目点拨】本题考查图象变换后的解析式,考查正弦型三角函数的对称性7、D【解题分析】

对函数求导,利用求得极值点,再检验是否为极小值点,从而求得极小值的范围.【题目详解】令,得,检验:当时,,当时,,所以的极小值点为,所以的极小值为,又.∵,∴,∴.选D.【题目点拨】本题考查利用导数判断单调性和极值的关系,属于中档题.8、C【解题分析】

先作出约束条件表示的平面区域,令,由图求出的范围,进而求出的最大值.【题目详解】作出可行域如图:令,由得,点;由得,点,由图知当目标函数经过点时,最大值为4,当经过点时,最小值为,所以的最大值为8.故选:C【题目点拨】本题主要考查了简单线性规划问题,考查了学生的作图能力与数形结合的思想.9、B【解题分析】

由题意结合导函数研究函数的性质即可确定点A的坐标.【题目详解】设点A的坐标为,,则函数在处切线的斜率为:,切线与直线x﹣y+1=0平行,则,解得:,切点坐标为,即.本题选择B选项.【题目点拨】本题主要考查导函数研究函数的切线,直线平行的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.10、A【解题分析】

根据正相关和负相关以及相关系数的知识,选出正确选项.【题目详解】由散点图可知图(1)与图(3)是正相关,故r1>0,r3>0,图(2)与图(4)是负相关,故r2<0,r4<0,且图(1)与图(2)的样本点集中在一条直线附近,因此r2<r4<0<r3<r1.故选:A.【题目点拨】本小题主要考查散点图,考查相关系数、正相关和负相关的理解,属于基础题.11、B【解题分析】

利用同角三角函数的基本关系求得cosα和sinβ的值,两角和的三角公式求得cos(α+β)的值.【题目详解】解:∵sinα,cosβ,α、β均为第二象限角,∴cosα,sinβ,∴cos(α+β)=cosαcosβ-sinαsinβ•(),故答案为B【题目点拨】本题主要考查同角三角函数的基本关系,两角和的余弦公式,属于基础题.12、C【解题分析】

在点M极径不变,在极角的基础上加上π,可得出与点M关于极点对称的点的一个极坐标。【题目详解】设点M关于极点的对称点为M',则OM'所以点M'的一个极坐标为(4,7π6)【题目点拨】本题考查点的极坐标,考查具备对称性的两点极坐标之间的关系,把握极径与极角之间的关系,是解本题的关键,属于基础题。二、填空题:本题共4小题,每小题5分,共20分。13、8【解题分析】

取线段AB的中点D,点P在平面ABC的射影点M,利用二面角的定义得出∠PDC为二面角P-AB-C的平面角,于此得出PMDM=4,并在RtΔOMC中,由勾股定理OM2+C【题目详解】取线段AB的中点D,设P在底面ABC的射影为M,则H=PM,连接CD,PD(图略).设PM=4k,易证PD⊥AB,CD⊥AB,则∠PDC为二面角P-AB-C的平面角,从而tan∠PDC=PMDM=4k在RtΔOMC中,OM2+CM2=OC故答案为:85【题目点拨】本题考查二面角的定义,考查多面体的外接球,在处理多面体的外接球时,要确定球心的位置,同时在求解时可引入一些参数去表示相关边长,可简化计算,考查逻辑推理能力,属于中等题。14、【解题分析】,如图所示,其递减区间是.15、【解题分析】

首先求出x,y的平均数,根据样本中心点满足线性回归方程,把样本中心点代入,得到关于a的一元一次方程,解方程即可.【题目详解】:(1+2+3+4)=2.5,(4.5+4+3+2.5)=3.5,将(2.5,3.5)代入线性回归直线方程是0.7x+a,可得3.5=﹣1.75+a,故a=.故答案为【题目点拨】本题考查回归分析,考查样本中心点满足回归直线的方程,考查求一组数据的平均数,是基础题16、1【解题分析】分析:把丙丁捆绑在一起,作为一个元素排列,然后把甲插入,注意丙丁这个元素的位置不同决定着甲插入的方法数的不同.详解:.故答案为1.点睛:本题考查排列组合的应用.排列组合中如果有元素相邻,则可用捆绑法,即相邻的元素捆绑在一起作为一个元素进行排列,当然它们之间也要全排列,特殊元素可优先考虑.注意分类与分步结合,不重不漏.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】

(1)根据条件列方程组,根据首项和公差求通项公式;(2)数列是等比数列,根据等比数列的前项求和公式求解.【题目详解】设等差数列的首项为,公差,解得:;(2),,是公比为8,首项为的等比数列,.【题目点拨】本题考查等差和等比数列的基本量的求解,属于基础题型,只需熟记公式.18、(1);(2)或【解题分析】

(1)利用三种方程的转化方法,将曲线C的极坐标方程和直线l的参数方程转化为普通方程;(2)先将直l的参数方程是(t是参数)化成普通方程,再求出弦心距,利用勾股定理求出弦长,也可以直接利用直线的参数方程和圆的普通方程联解,求出对应的参数t1,t2的关系式,利用|AB|=|t1﹣t2|,得到α的三角方程,解方程得到α的值,要注意角α范围.【题目详解】(1)由ρ=4cosθ,得ρ2=4ρcosθ.因为x2+y2=ρ2,x=ρcosθ,所以x2+y2=4x,即曲线C的直角坐标方程为(x-2)2+y2=4.(2)将代入圆的方程(x-2)2+y2=4,得(tcosα-1)2+(tsinα)2=4,化简得t2-2tcosα-3=0.设A,B两点对应的参数分别为t1,t2,由根与系数的关系,得所以|AB|=|t1-t2|===,故4cos2α=1,解得cosα=±.因为直线的倾斜角α∈[0,π),所以α=或.【题目点拨】利用直线参数方程中参数的几何意义求解问题经过点P(x0,y0),倾斜角为α的直线l的参数方程为(t为参数).若A,B为直线l上两点,其对应的参数分别为,线段AB的中点为M,点M所对应的参数为,则以下结论在解题中经常用到:(1);(2);(3);(4).19、答案见解析【解题分析】

由题意首先求得n的值,然后结合展开式的通项公式即可确定展开式中所有有理项.【题目详解】由题意可得:,解得:,则展开式的通项公式为:,由于且,故当时展开式为有理项,分别为:,,.【题目点拨】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.20、(1);(2)分布列见解析.【解题分析】

(1)由表格可知:这天的日均值监测数据中,只有天达到一级,然后利用组合计数原理与古典概型的概率公式可计算出所求事件的概率;(2)由题意可知,随机变量的可能取值有、、、,然后利用超几何分布即可得出随机变量的分布列.【题目详解】(1)由表格可知:这天的日均值监测数据中,只有天达到一级.随机抽取天,恰有天空气质量达到一级的概率为;(2)由题意可知,随机变量的可能取值有、、、,,,,.因此,随机变量的分布列如下表所示:【题目点拨】本题考查了概率的计算,同时也考查了超几何分布及其分布列等基础知识与基本技能,属于中档题.21、(1)(2)【解题分析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论