




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届铜陵市重点中学数学高二第二学期期末质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下表提供了某厂节能降耗技术改造后在生产产品过程中记录的产量(吨)与相应的生产能耗(吨)的几组对应数据:根据上表提供的数据,求出关于的线性回归方程为,那么表中的值为()A. B. C. D.2.(2018年天津市河西区高三三模)已知双曲线:的虚轴长为,右顶点到双曲线的一条渐近线的距离为,则双曲线的方程为()A. B. C. D.3.设曲线在点处的切线与直线平行,则()A.B.C.D.4.已知函数,则曲线在处的切线的倾斜角为()A. B. C. D.5.若,则下列结论正确的是()A. B. C. D.6.已知定义在上的可导函数的导函数为,满足,且,则不等式(为自然对数的底数)的解集为()A. B. C. D.7.在中,,,,则的面积为()A.15 B. C.40 D.8.设随机变量的分布列为,则()A.3 B.4 C.5 D.69.设,则是的A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件10.已知是四面体内任一点,若四面体的每条棱长均为,则到这个四面体各面的距离之和为()A. B. C. D.11.若存在两个正实数,使得等式成立,其中为自然对数的底数,则实数的取值范围是()A. B. C. D.12.如图是函数的导函数的图象,则下列说法正确的是()A.是函数的极小值点B.当或时,函数的值为0C.函数关于点对称D.函数在上是增函数二、填空题:本题共4小题,每小题5分,共20分。13.设集合,,则集合______.14.在平面直角坐标系中,若直线与椭圆在第一象限内交于点,且以为直径的圆恰好经过右焦点,则椭圆的离心率是______.15.若关于的不等式(,且)的解集是,则的取值的集合是_________.16.在平面直角坐标系中,己知直线与圆相切,则k的值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)球O的半径为R,A﹑B﹑C在球面上,A与B,A与C的球面距离都为,B与C的球面距离为,求球O在二面角B-OA-C内的部分的体积.18.(12分)已知函数有两个极值点和3.(1)求,的值;(2)若函数的图象在点的切线为,切线与轴和轴分别交于,两点,点为坐标原点,求的面积.19.(12分)如图,在多面体中,四边形为等腰梯形,,已知,,,四边形为直角梯形,,.(1)证明:平面平面;(2)求直线与平面所成角的正弦值.20.(12分)如图,在多面体中,平面,四边形为正方形,四边形为梯形,且,,,.(1)求直线与平面所成角的正弦值;(2)线段上是否存在点,使得直线平面?若存在,求的值:若不存在,请说明理由.21.(12分)设,其中,,与无关.(1)若,求的值;(2)试用关于的代数式表示:;(3)设,,试比较与的大小.22.(10分)已知复数(a,),(c,).(1)当,,,时,求,,;(2)根据(1)的计算结果猜想与的关系,并证明该关系的一般性
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
先求出这组数据的样本中心点,样本中心点是用含有t的代数式表示的,把样本中心点代入变形的线性回归方程,得到关于t的一次方程,解方程,得到结果.【题目详解】∵由回归方程知=,解得t=3,故选A.【题目点拨】】本题考查回归分析的初步应用,考查样本中心点的性质,考查方程思想的应用,是一个基础题,解题时注意数字计算不要出错.2、A【解题分析】分析:由虚轴长为可得,由到渐近线的距离为可解得,从而可得结果.详解:由虚轴长为可得,右顶点到双曲线的一条渐近线距离为,,解得,则双曲线的方程为,故选A.点睛:用待定系数法求双曲线方程的一般步骤;①作判断:根据条件判断双曲线的焦点在轴上,还是在轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程或;③找关系:根据已知条件,建立关于、、的方程组;④得方程:解方程组,将解代入所设方程,即为所求.3、D【解题分析】试题分析:由的导数为,则在点处的切线斜率为,由切线与直线平行,所以,故选D.考点:利用导数研究曲线在某点处的切线方程.4、B【解题分析】
求得的导数,可得切线的斜率,由直线的斜率公式,可得所求倾斜角.【题目详解】函数的导数为,可得在处的切线的斜率为,即,为倾斜角,可得.故选:B.【题目点拨】本题主要考查了导数的几何意义,函数在某点处的导数即为曲线在该点处的切线的斜率,是解题的关键,属于容易题.5、C【解题分析】
先用作为分段点,找到小于和大于的数.然后利用次方的方法比较大小.【题目详解】易得,而,故,所以本小题选C.【题目点拨】本小题主要考查指数式和对数式比较大小,考查指数函数和对数函数的性质,属于基础题.6、B【解题分析】令所以,选B.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造.构造辅助函数常根据导数法则进行:如构造,构造,构造,构造等7、B【解题分析】
先利用余弦定理求得,然后利用三角形面积公式求得三角形的面积.【题目详解】由余弦定理得,解得,由三角形面积得,故选B.【题目点拨】本小题主要考查余弦定理解三角形,考查三角形的面积公式,属于基础题.8、C【解题分析】分析:根据方差的定义计算即可.详解:随机变量的分布列为,则则、故选D点睛:本题考查随机变量的数学期望和方差的求法,是中档题,解题时要认真审题,注意方差计算公式的合理运用.9、A【解题分析】
通过分类讨论可证得充分条件成立,通过反例可知必要条件不成立,从而得到结果.【题目详解】若,则;若,则;若,则,可知充分条件成立;当,时,则,此时,可知必要条件不成立;是的充分不必要条件本题正确选项:【题目点拨】本题考查充分条件与必要条件的判定,属于基础题.10、A【解题分析】
先求出正四面体的体积,利用正四面体的体积相等,求出它到四个面的距离.【题目详解】解:因为正四面体的体积等于四个三棱锥的体积和,
设它到四个面的距离分别为,
由于棱长为1的正四面体,四个面的面积都是;
又顶点到底面的投影在底面的中心,此点到底面三个顶点的距离都是高的,
又高为,
所以底面中心到底面顶点的距离都是;
由此知顶点到底面的距离是;
此正四面体的体积是.
所以:,
解得.
故选:A.【题目点拨】本题考查了正四面体的体积计算问题,也考查了转化思想和空间想象能力与计算能力.11、D【解题分析】试题分析:由得,即,即设,则,则条件等价为,即有解,设,为增函数,∵,∴当时,,当时,,即当时,函数取得极小值为:,即,若有解,则,即,则或,故选D.考点:函数恒成立问题.【方法点晴】本题主要考查不等式恒成立问题,根据函数与方程的关系,转化为两个函数相交问题,利用构造法和导数法求出函数的极值和最值是解决本题的关键,综合性较强,难度较大根据函数与方程的关系将方程进行转化,利用换元法转化为方程有解,构造函数求函数的导数,利用函数极值和单调性的关系进行求解即可.12、D【解题分析】
由导函数的图象得到原函数的增减区间及极值点,然后逐一分析四个命题即可得到答案.【题目详解】由函数f(x)的导函数图象可知,当x∈(−∞,−a),(−a,b)时,f′(x)<0,原函数为减函数;当x∈(b,+∞)时,f′(x)>0,原函数为增函数.故不是函数的极值点,故A错误;当或时,导函数的值为0,函数的值未知,故B错误;由图可知,导函数关于点对称,但函数在(−∞,b)递减,在(b,+∞)递增,显然不关于点对称,故C错误;函数在上是增函数,故D正确;故答案为:D.【题目点拨】本题考查函数的单调性与导数的关系,属于导函数的应用,考查数形结合思想和分析能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
根据集合,,求出两集合的交集即可【题目详解】,故答案为【题目点拨】本题主要考查了集合交集及其运算,熟练掌握交集的定义是解本题的关键,属于基础题.14、.【解题分析】
由题意可得轴,求得的坐标,由在直线上,结合离心率公式,解方程可得所求值.【题目详解】解:以为直径的圆恰好经过右焦点,可得轴,令,可得,不妨设,由在直线上,可得,即为,由可得,解得(负的舍去).故答案为:.【题目点拨】本题考查椭圆的方程和性质,考查了圆的性质.本题的关键是由圆过焦点得出点的坐标.求离心率的做题思路是,根据题意求出或者列出一个关于的方程,由椭圆或双曲线的的关系,进而求解离心率.15、【解题分析】
由题意可得当x=时,4x=log2ax,由此求得a的值.【题目详解】∵关于x的不等式4x<log2ax(a>0,且a≠)的解集是{x|0<x<},则当x=时,4x=log2ax,即2=log2a,∴(2a)2=,∴2a=,∴a=,故答案为.【题目点拨】本题主要考查指数不等式、对数不等式的解法,体现了转化的数学思想,属于中档题.16、【解题分析】
通过圆心到直线的距离等于半径构建等式,于是得到答案.【题目详解】根据题意,可知圆心为,半径为2,于是圆心到直线的距离,而直线与圆相切,故,因此解得.【题目点拨】本题主要考查直线与圆的位置关系,意在考查学生的计算能力和转化能力,难度不大.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解题分析】
先求出二面角B-AO-C的平面角,再根据比例关系求出球O在二面角B-OA-C内的部分的体积。【题目详解】解:A与B,A与C的球面距离都为,,BOC为二面角B-AO-C的平面角,又B与C的球面距离为,BOC=,球O夹在二面角B-AO-C的体积是球的六分之一即为【题目点拨】先求出二面角B-AO-C的平面角,再根据比例关系求出球O在二面角B-OA-C内的部分的体积。18、(1),;(2)【解题分析】
(1)先对函数求导,得到,根据函数极值点,结合韦达定理,即可求出结果;(2)先由(1)得到解析式,求出点,根据导函数,求出切线斜率,得到切线方程,进而求出,两点坐标,即可求出三角形面积.【题目详解】(1)由题意可得,,因为函数有两个极值点和3.所以的两根为和3.由韦达定理知,,解得,∴(2)由(1)知,,∴,所以切线的斜率所以切线的方程为:此时,,所以【题目点拨】本题主要考查由函数的极值点求参数的问题,以及求函数在某点处的切线方程,熟记导数的几何意义即可,属于常考题型.19、(1)见解析(2)【解题分析】分析:(1)通过取AD中点M,连接CM,利用,得到直角;再利用可得;而,DE平面ADEF,所以可得面面垂直.(2)以AD中点O建立空间直角坐标系,写出各点坐标,求得平面CAE与直线BE向量,根据直线与法向量的夹角即可求得直线与平面夹角的正弦值.详解:(1)证明:取的中点,连接,,,由四边形为平行四边形,可知,在中,有,∴.又,,∴平面,∵平面,∴.又,,∴平面.∵平面,∴平面平面.(2)解:由(1)知平面平面,如图,取的中点为,建立空间直角坐标系,,,,,,,.设平面的法向量,则,即,不妨令,得.故直线与平面所成角的正弦值.点睛:本题考查了空间几何体面面垂直的综合应用,利用法向量法求线面夹角的正弦值,关键注意计算要准确,属于中档题.20、(1);(2).【解题分析】
建立适当的空间直角坐标系.(1)求出平面的法向量,利用空间向量夹角公式可以求出直线与平面所成角的正弦值;(2)求出平面的法向量,结合线面平行的性质,空间向量共线的性质,如果求出的值,也就证明出存在线段上是否存在点,使得直线平面,反之就不存在.【题目详解】以为空间直角坐标系的原点,向量所在的直线为轴.如下所示:.(1)平面的法向量为,..直线与平面所成角为,所以有;(2)假设线段上是存在点,使得直线平面.设,因此,所以的坐标为:..设平面的法向量为,,,因为直线平面,所以有,即.【题目点拨】本题考查了线面角的求法以及线面平行的性质,考查了数学运算能力.21、(1);(2);(3).【解题分析】分析:(1)由,即可求出p;(2)当时,,两边同乘以,再等式两边对求导,最后令即可;(3)猜测:,利用数学归纳法证明.详解:(1)由题意知,所以.(2)当时,,两边同乘以得:,等式两边对求导,得:,令得:,即.(3),,猜测:,当时,,,,此时不等式成立;②假设时,不等式成立,即:,则时,所以当时,不等式也成立;根据①②可知,,均有.点睛:利用数学归纳法证明等式时应注意的问题(1)用数学归纳法证明等式其关键点在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 信阳涉外职业技术学院《深度学习实验》2023-2024学年第二学期期末试卷
- 2025至2031年中国移动式记事板行业投资前景及策略咨询研究报告
- 2025-2030年中国B超仪行业市场运行趋势分析及投资预测研究报告
- 广东省广州市越秀区知用中学2024届中考数学仿真试卷含解析
- 2025公司项目负责人安全培训考试试题5A
- 2024-2025企业员工安全培训考试试题附参考答案【黄金题型】
- 2024-2025项目管理人员年度安全培训考试试题附完整答案(网校专用)
- 25年公司厂级员工安全培训考试试题及一套答案
- 25年公司、项目部、各个班组安全培训考试试题及参考答案(培优B卷)
- 2025工厂员工安全培训考试试题1套
- 著名中医妇科 夏桂成教授补肾调周法
- VSM(价值流图中文)课件
- 考古发掘中文物的采集与保存课件
- 人工气道的护理刘亚课件
- 专业技术人员
- 拌和场安全检查表
- 节日主题班会 《感恩母亲节》教学课件
- 新加坡sm214th面经44绯的同学
- 全国第七届中小学音乐优质课比赛教学设计跳圆舞曲的小猫
- 我国城市马拉松赛事发展现状分析
- 基于UKF滤波的单目标跟踪算法研究
评论
0/150
提交评论