2024届沧州市重点中学数学高二第二学期期末达标检测模拟试题含解析_第1页
2024届沧州市重点中学数学高二第二学期期末达标检测模拟试题含解析_第2页
2024届沧州市重点中学数学高二第二学期期末达标检测模拟试题含解析_第3页
2024届沧州市重点中学数学高二第二学期期末达标检测模拟试题含解析_第4页
2024届沧州市重点中学数学高二第二学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届沧州市重点中学数学高二第二学期期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.双曲线的渐近线方程是A. B.C. D.2.为了解某高校高中学生的数学运算能力,从编号为0001,0002,…,2000的2000名学生中采用系统抽样的方法抽取一个容量为50的样本,并把样本编号从小到大排列,已知抽取的第一个样本编号为0003,则最后一个样本编号是()A.0047 B.1663 C.1960 D.19633.命题,则()A.是真命题,,B.是假命题,,C.是真命题,,D.是假命题,,4.给出命题①零向量的长度为零,方向是任意的.②若,都是单位向量,则.③向量与向量相等.④若非零向量与是共线向量,则A,B,C,D四点共线.以上命题中,正确命题序号是()A.① B.② C.①和③ D.①和④5.命题“,使”的否定是()A.,使 B.,使C.,使 D.,使6.设命题:,;命题:若,则,则下列命题为真命题的是()A. B. C. D.7.当取三个不同值时,正态曲线的图象如图所示,则下列选项中正确的是()A. B.C. D.8.设M=a+1a-2(2<a<3),A.M>N B.M=N C.M<N D.不确定9.某医疗机构通过抽样调查(样本容量n=1000),利用2×2列联表和统计量研究患肺病是否与吸烟有关.计算得,经查阅临界值表知,下列结论正确的是()0.0500.0100.001k3.8416.63510.828A.在100个吸烟的人中约有95个人患肺病 B.若某人吸烟,那么他有的可能性患肺病C.有的把握认为“患肺病与吸烟有关” D.只有的把握认为“患肺病与吸烟有关”10.已知随机变量服从正态分布,且,则()A.-2 B.2 C.4 D.611.“”是“方程的曲线是椭圆”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件12.已知复数(为虚数单位),则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,且,则称集合是“兄弟集合”,在集合中的所有非空子集中任选一个集合,则该集合是“兄弟集合”的概率是__________14.设椭圆的左、右顶点分别为A,B,点P在椭圆上且异于A,B两点,O为坐标原点.若直线PA与PB的斜率之积为,则椭圆的离心率为_____.15.若,满足不等式,则的取值范围是________.16.某旋转体的三视图如图所示,则该旋转体的侧面积是________.主视图左视图俯视图三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,,为实数.(1)若,求;(2)若,求实数,的值.18.(12分)为了了解甲、乙两校学生自主招生通过情况,从甲校抽取51人,从乙校抽取41人进行分析.通过人数末通过人数总计甲校乙校31总计51(1)根据题目条件完成上面2×2列联表,并据此判断是否有99%的把握认为自主招生通过情况与学生所在学校有关;(2)现已知甲校A,B,C三人在某大学自主招生中通过的概率分别为,用随机变量X表示A,B,C三人在该大学自主招生中通过的人数,求X的分布列及期望E(X).参考公式:.参考数据:1.141.111.141.1241.111.1141.1112.1622.6153.8414.1245.5346.86911.82819.(12分)已知集合,.(1)若,,求实数的取值范围;(2)若,且,求实数的取值范围.20.(12分)已知函数.(Ⅰ)讨论函数的单调性;(Ⅱ)当时,在定义域内恒成立,求实数的值.21.(12分)已知函数.(1)当时,求函数的单调区间;(2)是否存在实数a,使函数在上单调递增?若存在,求出a的取值范围;若不存在,请说明理由.22.(10分)在极坐标系中,极点为0,已知曲线与曲线交于不同的两点.求:(1)的值;(2)过点且与直线平行的直线的极坐标方程.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

由双曲线方程求得,由渐近线方程为求得结果.【题目详解】由双曲线方程得:,渐近线方程为:本题正确选项:【题目点拨】本题考查双曲线渐近线的求解,属于基础题.2、D【解题分析】,故最后一个样本编号为,故选D.3、C【解题分析】分析:根据命题真假的判断和含有量词的命题的否定,即可得到结论.详解:,恒成立是真命题,,故选C.点睛:本题考查命题真假的判断,含有量词的命题的否定关系的应用.4、A【解题分析】

根据零向量和单位向量的定义,易知①正确②错误,由向量的表示方法可知③错误,由共线向量的定义和四点共线的意义可判断④错误【题目详解】根据零向量的定义可知①正确;根据单位向量的定义,单位向量的模相等,但方向可不同,故两个单位向量不一定相等,故②错误;与向量互为相反向量,故③错误;若与是共线向量,那么可以在一条直线上,也可以不在一条直线上,只要它们的方向相同或相反即可,故④错误,故选A.【题目点拨】向量中有一些容易混淆的概念,如共线向量,它指两个向量方向相同或相反,这两个向量对应的起点和终点可以不在一条直线上,实际上共线向量就是平行向量.5、A【解题分析】

根据含有一个量词的命题的否定,可直接得出结果.【题目详解】因为特称命题的否定为全称命题,所以命题“,使”的否定是“,使”.故选A【题目点拨】本题主要考查含有一个量词的命题的否定,只需改量词与结论即可,属于基础题型.6、D【解题分析】分析:先判断命题的真假,进而根据复合命题真假的真值表,可得结论.详解:因为成立,所以,不存在,,故命题为假命题,为真命题;当时,成立,但不成立,故命题为假命题,为真命题;故命题均为假命题,命题为真命题,故选D.点睛:本题通过判断或命题、且命题以及非命题的真假,综合考查不等式的性质以及特称命题的定义,属于中档题.解答非命题、且命题与或命题真假有关的题型时,应注意:(1)原命题与其非命题真假相反;(2)或命题“一真则真”;(3)且命题“一假则假”.7、A【解题分析】分析:由题意结合正态分布图象的性质可知,越小,曲线越“瘦高”,据此即可确定的大小.详解:由正态曲线的性质知,当一定时,曲线的形状由确定,越小,曲线越“瘦高”,所以.本题选择A选项.点睛:本题主要考查正态分布图象的性质,系数对正态分布图象的影响等知识,意在考查学生的转化能力和计算求解能力.8、A【解题分析】∵x2+116≥1∴N=log12(x2+又∵M=a+1a-2=a-2+1∴0<a-2<1.∴a-2+1a-2∴a+1a-2∴M>N.答案:A点睛:这个题目考查了比较函数值的大小关系;比较大小的常用方法有:做差,如果数值均为正,还可以考虑做商;还可以构造函数应用单调性比较大小;还可以放缩比较大小,常用的放缩方式有:不等式的应用.9、C【解题分析】

将计算出的与临界值比较即可得答案。【题目详解】由题得,且由临界值表知,所以有的把握认为“患肺病与吸烟有关”,故选C.【题目点拨】本题考查独立性检验,解题的关键是将估计值与临界值比较,属于简单题。10、D【解题分析】分析:由题意知随机变量符合正态分布,又知正态曲线关于对称,得到两个概率相等的区间关于对称,得到关于的方程,解方程求得详解:由题随机变量服从正态分布,且,则与关于对称,则故选D.点睛:本题主要考查正态分布曲线的特点及曲线所表示的意义、函数图象对称性的应用等基础知识,属于基础题.11、B【解题分析】方程的曲线是椭圆,故应该满足条件:故”是“方程的曲线是椭圆”的必要不充分条件.故答案为:B.12、D【解题分析】分析:化简复,利用复数模的公式求解即可.详解:因为,所以=,故选D.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

首先确定非空子集的个数;根据“兄弟集合”的定义,可列举出所有“兄弟集合”,根据古典概型概率公式求得结果.【题目详解】集合的非空子集共有:个集合的非空子集中,为“兄弟集合”的有:,,,,,,,共个根据古典概型可知,所求概率本题正确结果:【题目点拨】本题考查古典概型概率问题的求解,关键是能够根据“兄弟集合”的定义确定符合题意的集合个数.14、.【解题分析】

设点P的坐标为,代入椭圆方程,运用直线的斜率公式,化简整理,即可得到所求离心率.【题目详解】设点P的坐标为.由题意,有,①由A(﹣a,0),B(a,0),得,.由,可得,代入①并整理得.由于,故,于是,∴椭圆的离心率.故答案为:.【题目点拨】本题考查椭圆的方程和性质,考查椭圆离心率的求法,是中档题.求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得(的取值范围).15、【解题分析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【题目详解】解:由,满足不等式作出可行域如图,

令,目标函数经过A点时取的最小值,

联立,解得时得最小值,.

目标函数经过B点时取的最大值,

联立,解得,此时取得最大值,.

所以,z=2x+y的取值范围是.

故答案为:【题目点拨】本题考查简单的线性规划,考查了数形结合的解题思想方法,是基础题.16、【解题分析】

根据已知可得该几何体是一个圆锥,求出底面半径和母线长,代入侧面积公式,可得答案.【题目详解】解:由已知有可得:该几何体是一个圆锥,底面直径为2,底面半径r=1,高为3,故母线长l,故圆锥的侧面积S=πrl,故答案为:【题目点拨】本题考查的知识点是空间几何体的三视图,圆锥的体积和表面积,难度不大,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)-3,2【解题分析】分析:(1)利用复数乘法的运算法则以及共轭复数的定义化简,利用复数模的公式求解即可;(2)利用复数除法的运算法则将,化为,由复数相等的性质可得,从而可得结果.详解:(1)∵,∴.∴,∴;(2)∵,∴.∴,解得,∴,的值为:-3,2.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分18、(1)填表见解析,有99%的把握认为学生的自主招生通过情况与所在学校有关(2)见解析【解题分析】

(1)根据题中信息完善列联表,并计算出的观测值,结合临界值表找出犯错误的概率,于此可对题中的结论正误进行判断;(2)列出随机变量的可能取值,利用独立事件的概率乘法公式计算出随机变量在每个可能值处的概率,可列出随机变量的概率分布列,并由此计算出随机变量的数学期望.【题目详解】(1)列联表如下:通过人数未通过人数总计甲校214151乙校312141总计4151111由算得:,所以有99%的把握认为学生的自主招生通过情况与所在学校有关;(2)设自主招生通过分别记为事件,则.∴随机变量的可能取值为1,1,2,3.,,,.所以随机变量X的分布列为:.【题目点拨】本题考查独立性检验的基本思想,考查随机变量分布列及其数学期望的求解,解题时要判断出随机变量所服从的分布列,结合分布列类型利用相关公式计算出相应的概率,考查计算能力,属于中等题.19、(1);(2)【解题分析】

结合指数函数和对数函数性质可分别求得集合和集合;(1)由交集定义得到,分别在和两种情况下构造不等式求得结果;(2)由并集定义得到,根据交集结果可构造不等式求得结果.【题目详解】(1)当时,,解得:,满足当时,,解得:综上所述:实数的取值范围为(2),解得:实数的取值范围为【题目点拨】本题考查根据集合包含关系、交集结果求解参数范围的问题,涉及到指数函数和对数函数性质的应用;易错点是在根据包含关系求参数范围时,忽略子集可能为空集的情况,造成范围求解错误.20、(Ⅰ)当时,单调递增区间为,无单调递减区间;当时,单调递增区间为,单调递减区间为(Ⅱ)【解题分析】

(Ⅰ)求出函数的的定义域以及导函数,分类讨论,,情况下导数的正负,由此得到答案;(Ⅱ)结合(Ⅰ)可得函数的最小值,要使在定义域内恒成立,则恒成立,令,利用导数求出的最值,从而得到实数的值。【题目详解】(Ⅰ)由题可得函数的的定义域为,;(1)当时,恒成立,则单调递增区间为,无单调递减区间(2)当时,恒成立,则单调递增区间为,无单调递减区间;(3)当时,令,解得:,令,解得:,则单调递增区间为,单调递减区间为;综述所述:当时,单调递增区间为,无单调递减区间;当时,单调递增区间为,单调递减区间为;(Ⅱ)由(Ⅰ)可知,当时,单调递增区间为,单调递减区间为,则;所以在定义域内恒成立,则恒成立,即,令,先求的最大值:,令,解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论