版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广西桂林阳朔中学数学高二下期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某产品的广告费用万元与销售额万元的统计数据如下表:根据以上数据可得回归直线方程,其中,据此模型预报广告费用为6万元时,销售额为65.5万元,则,的值为()A., B.,C., D.,2.在二项式的展开式中,各项系数之和为,二项式系数之和为,若,则()A. B. C. D.3.在掷一枚图钉的随机试验中,令,若随机变量X的分布列如下:010.3则()A.0.21 B.0.3 C.0.5 D.0.74.设函数,若实数分别是的零点,则()A. B. C. D.5.已知函数f(x)对任意的实数x均有f(x+2)+f(x)=0,f(0)=3,则f(2022)等于()A.﹣6 B.﹣3 C.0 D.36.如果f(n)∈N+),那么f(n+1)-f(n)等于()A. B. C. D.7.在的展开式中,各项系数与二项式系数和之比为,则的系数为()A.21 B.63 C.189 D.7298.某机构需掌握55岁人群的睡眠情况,通过随机抽查110名性别不同的55岁的人的睡眠质量情况,得到如下列联表男女总计好402060不好203050总计6050110由得,.根据表0.0500.0100.0013.8416.63510.828得到下列结论,正确的是()A.有以下的把握认为“睡眠质量与性别有关”B.有以上的把握认为“睡眠质量与性别无关”C.在犯错误的概率不超过0.01的前提下,认为“睡眠质量与性别有关”D.在犯错误的概率不超过0.01的前提下,认为“睡眠质量与性别无关”9.圆柱形容器内盛有高度为6cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球,如图所示.则球的半径是()A.1cm B.2cmC.3cm D.4cm10.给出下列三个命题:命题1:存在奇函数和偶函数,使得函数是偶函数;命题2:存在函数、及区间,使得、在上均是增函数,但在上是减函数;命题3:存在函数、(定义域均为),使得、在处均取到最大值,但在处取到最小值.那么真命题的个数是().A. B. C. D.11.已知函数,则函数的零点个数为()A.1 B.3 C.4 D.612.将点的极坐标化成直角坐标为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知矩阵,则矩阵的逆矩阵为_________.14.极坐标系中,曲线上的点到直线的距离的最大值是.15.已知两个单位向量,的夹角为,,若,则_____.16.命题“,”的否定是_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某工厂的某车间共有位工人,其中的人爱好运动。经体检调查,这位工人的健康指数(百分制)如下茎叶图所示。体检评价标准指出:健康指数不低于者为“身体状况好”,健康指数低于者为“身体状况一般”。(1)根据以上资料完成下面的列联表,并判断有多大把握认为“身体状况好与爱好运动有关系”?身体状况好身体状况一般总计爱好运动不爱好运动总计(2)现将位工人的健康指数分为如下组:,,,,,其频率分布直方图如图所示。计算该车间中工人的健康指数的平均数,由茎叶图得到真实值记为,由频率分布直方图得到估计值记为,求与的误差值;(3)以该车间的样本数据来估计该厂的总体数据,若从该厂健康指数不低于者中任选人,设表示爱好运动的人数,求的数学期望。附:。18.(12分)假定某射手射击一次命中目标的概率为.现有4发子弹,该射手一旦射中目标,就停止射击,否则就一直独立地射击到子弹用完.设耗用子弹数为X,求:(1)X的概率分布;(2)数学期望E(X).19.(12分)已知点,经矩阵对应的变换作用下,变为点.(1)求的值;(2)直线在对应的变换作用下变为直线,求直线的方程.20.(12分)某公司生产一种产品,每年投入固定成本万元.此外,每生产件这种产品还需要增加投入万元.经测算,市场对该产品的年需求量为件,且当出售的这种产品的数量为(单位:百件)时,销售所得的收入约为(万元).(1)若该公司这种产品的年产量为(单位:百件),试把该公司生产并销售这种产品所得的年利润表示为年产量的函数;(2)当该公司的年产量为多少时,当年所得利润最大?最大为多少?21.(12分)为了了解学生的身体素质情况,现从某校学生中随机抽取10人进行体能测试,测试的分数(百分制)如茎叶图所示,根据有关国家标准成绩不低于79分的为优秀,将频率视为概率.(1)另从我校学生中任取3人进行测试,求至少有1人成绩是“优秀”的概率;(Ⅱ)从抽取的这10人(成绩见茎叶图)中随机选取3人,记X表示测试成绩为“优秀”的学生人数,求X的分布列和数学期望.22.(10分)已知函数,其中.(1)讨论的单调性;(2)当时,恒成立,求的值;(3)确定的所有可能取值,使得对任意的,恒成立.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】分析:根据回归直线过样本中心和条件中给出的预测值得到关于,的方程组,解方程组可得所求.详解:由题意得,又回归方程为,由题意得,解得.故选C.点睛:线性回归方程过样本中心是一个重要的结论,利用此结论可求回归方程中的参数,也可求样本数据中的参数.根据回归方程进行预测时,得到的数值只是一个估计值,解题时要注意这一点.2、A【解题分析】分析:先根据赋值法得各项系数之和,再根据二项式系数性质得,最后根据解出详解:因为各项系数之和为,二项式系数之和为,因为,所以,选A.点睛:“赋值法”普遍适用于恒等式,是一种重要的方法,对形如的式子求其展开式的各项系数之和,常用赋值法,只需令即可;对形如的式子求其展开式各项系数之和,只需令即可.3、D【解题分析】
先由概率和为1,求出,然后即可算出【题目详解】因为,所以所以故选:D【题目点拨】本题考查的是离散型随机变量的分布列的性质及求由分布列求期望,较简单.4、A【解题分析】由题意得,函数在各自的定义域上分别为增函数,∵,又实数分别是的零点∴,∴,故.选A.点睛:解答本题时,先根据所给的函数的解析式判断单调性,然后利用判断零点所在的范围,然后根据函数的单调性求得的取值范围,其中借助0将与联系在一起是关键.5、B【解题分析】
分析可得,即函数是周期为4的周期函数,据此可得,即可求解,得到答案.【题目详解】根据题意,函数对任意的实数均有,即,则有,即函数是周期为4的周期函数,则,故选B.【题目点拨】本题主要考查了函数的周期的判定及其应用,其中解答中根据题设条件,求得函数的周期是解答的关键,着重考查了推理与运算能力,属于基础题.6、D【解题分析】分析:直接计算f(n+1)-f(n).详解:f(n+1)-f(n)故答案为D.点睛:(1)本题主要考查函数求值,意在考查学生对该知识的掌握水平.(2)不能等于,因为前面还有项没有减掉.7、C【解题分析】分析:令得各项系数和,由已知比值求得指数,写出二项展开式通项,再令的指数为4求得项数,然后可得系数.详解:由题意,解得,∴,令,解得,∴的系数为.故选C.点睛:本题考查二项式定理,考查二项式的性质.在的展开式中二项式系数和为,而展开式中各项系数的和是在展开式中令变量值为1可得,二项展开式通项公式为.8、C【解题分析】
根据独立性检验的基本思想判断得解.【题目详解】因为,根据表可知;选C.【题目点拨】本题考查独立性检验的基本思想,属于基础题.9、C【解题分析】
设出球的半径,根据题意得三个球的体积和水的体积之和,等于柱体的体积,结合体积公式求解即可.【题目详解】设球半径为,则由,可得,解得,故选C.【题目点拨】本题主要考查了几何体的体积公式的应用,考查学生空间想象能力以及计算能力,是基础题.10、D【解题分析】对于命题1,取,,满足题意;对于命题2,取,,满足题意;对于命题3,取,,满足题意;即题中所给的三个命题均为真命题,真命题的个数是.本题选择D选项.11、C【解题分析】
令,可得,解方程,结合函数的图象,可求出答案.【题目详解】令,则,令,若,解得或,符合;若,解得,符合.作出函数的图象,如下图,时,;时,;时,.结合图象,若,有3个解;若,无解;若,有1个解.所以函数的零点个数为4个.故选:C.【题目点拨】本题考查分段函数的性质,考查了函数的零点,考查了学生的推理能力,属于中档题.12、C【解题分析】
利用极坐标与直角坐标方程互化公式即可得出.【题目详解】x=cos,y=sin,可得点M的直角坐标为.故选:C.【题目点拨】本题考查了极坐标与直角坐标方程互化公式,考查了推理能力与计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:根据逆矩阵公式得结果.详解:因为的逆矩阵为,所以矩阵A的逆矩阵为点睛:求逆矩阵方法:(1)公式法:的逆矩阵为,(2)定义法:.14、7【解题分析】试题分析:由线方程化为:,即,化为:,圆心坐标为(-2,0),半径为r=2,直线方程化为:-8=0,圆心到直线的距离为:=5,所以,最大距离为:5+2=7.考点:1、极坐标方程化为普通方程;2、点到直线的距离.15、2;【解题分析】
试题分析:由可得,即,故填2.考点:1.向量的运算.2.向量的数量积.16、,【解题分析】
原命题为特称命题,其否定为全称命题.【题目详解】“,”的否定是,故答案为:,【题目点拨】本题考查对特称命题进行否定.对全(特)称命题进行否定的方法:(1)改写量词:全称量词改写为存在量词,存在量词改写为全称量词;(2)否定结论:对于一般命题的否定只需直接否定结论即可.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)列联表见解析;有的把握认为“身体状况好与爱好运动有关系”;(2)误差值为;(3)数学期望【解题分析】
(1)根据茎叶图补全列联表,计算可得,从而得到结论;(2)利用平均数公式求得真实值;利用频率直方图估计平均数的方法求得估计值,作差得到结果;(3)可知,利用二项分布数学期望计算公式求得结果.【题目详解】(1)由茎叶图可得列联表如下:身体状况好身体状况一般总计爱好运动不爱好运动总计有的把握认为“身体状况好与爱好运动有关系”(2)由茎叶图可得:真实值由直方图得:估计值误差值为:(3)从该厂健康指数不低于的员工中任选人,爱好运动的概率为:则数学期望【题目点拨】本题考查独立性检验、茎叶图和频率分布直方图的相关知识、二项分布数学期望的计算,涉及到卡方的计算、利用频率分布直方图估计平均数、随机变量服从二项分布的判定等知识,属于中档题.18、(1)分布列见解析;(2)期望为.【解题分析】分析:(1)先写出X的所有可能取值,再求出每一个值对应的概率,再写出X的分布列.(2)直接利用数学期望的公式求E(X).详解:(1)耗用子弹数X的所有可能取值为1,2,3,1.当X=1时,表示射击一次,命中目标,则P(X=1)=;当X=2时,表示射击两次,第一次未中,第二次射中目标,则P(X=2)=(1-)×=;当X=3时,表示射击三次,第一次、第二次均未击中,第三次击中,则P(X=3)=(1-)×(1-)×=;当X=1时,表示射击四次,前三次均未击中,第四次击中或四次均未击中,则P(X=1)=(1-)×(1-)×(1-)×+(1-)×(1-)×(1-)×(1-)=.所以X的分布列为X1231P(2)由题得E(X)=1×+2×+3×+1×=.点睛:(1)本题主要考查随机变量的分布列和数学期望,意在考查学生对这些基础知识的掌握水平和分析推理能力.(2)本题的关键是计算概率,本题主要涉及独立事件的概率,一般地,如果事件相互独立,那么这个事件同时发生的概率,等于每个事件发生的概率的积,即.19、(1);(2)【解题分析】
(1)根据题意,结合题中的条件,利用矩阵乘法公式,列出满足条件的等量关系式,求得结果;(2)设直线上任意一点经矩阵变换为,利用矩阵乘法得出坐标之间的关系,利用在直线上,代入求得,进而得出直线的方程.【题目详解】(1)解得∴;(2)由(1)知:设直线上任意一点经矩阵变换为则∵∴即∴直线的方程为.【题目点拨】该题考查的是有关点和直线经矩阵变换的问题,在解题的过程中,注意变换的规则,掌握矩阵的乘法,属于简单题目.20、(1);(2)当年产量为件时,所得利润最大.【解题分析】分析:(1)利用销售额减去成本即可得到年利润关于年产量的函数解析式;(2)分别利用二次函数的性质以及函数的单调性,求得两段函数值的取值范围,从而可得结果.详解:(1)由题意得:;(2)当时,函数对称轴为,故当时,;当时,函数单调递减,故,所以当年产量为件时,所得利润最大.点睛:本题主要考查阅读能力及建模能力、分段函数的解析式,属于难题.与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.理解本题题意的关键是构造分段函数,构造分段函数时,做到分段合理、不重不漏,分段函数的最值是各段的最大(最小)者的最大者(最小者).21、(1)(2)的分布列见解析,期望【解题分析】试题分析:(1)由题意结合对立事件的概率公式可得至少有1人成绩是“优秀”的概率是;(2)的取值可能为0,1,2,3,结合超几何分布的概率公式可得函数的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小雪餐厅活动方案策划
- 餐厅征名活动策划方案
- 公司营销企划方案
- 传销破冰活动方案策划
- 爵士比赛活动策划方案
- 艾条营销方案
- 三八特价活动策划方案
- 营销方案-知乎
- 高压电作业安全交底与风险提示
- 生产车间班组长职责与管理技巧
- 2026沈阳市面向国内部分高校应届毕业生招聘教师1446人考试模拟试题及答案解析
- 河流与湖泊课件-地理粤人版八年级上册
- 市政道路电力、照明、通信管道工程施工方案
- 北京市海淀区2023-2024学年七年级上学期数学期中考试试卷(含答案)
- 2025年及未来5年中国足浴服务行业发展潜力分析及投资战略咨询报告
- 小红书运营知识培训班课件
- 2025四川天府银行秋季校园招聘笔试历年典型考题及考点剖析附带答案详解
- 请求权基础课件大纲
- 4.6.3神经系统支配下的运动教学设计-人教版生物八年级上册
- 林区安全生产培训课件
- 学生宿舍用电安全培训课件
评论
0/150
提交评论