炮车中学2024届数学高二第二学期期末经典模拟试题含解析_第1页
炮车中学2024届数学高二第二学期期末经典模拟试题含解析_第2页
炮车中学2024届数学高二第二学期期末经典模拟试题含解析_第3页
炮车中学2024届数学高二第二学期期末经典模拟试题含解析_第4页
炮车中学2024届数学高二第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

炮车中学2024届数学高二第二学期期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某个命题与正整数有关,如果当时命题成立,那么可推得当时命题也成立.现已知当时该命题不成立,那么可推得()A.当时该命题不成立 B.当时该命题成立C.当时该命题不成立 D.当时该命题成立2.已知关于的方程,,若对任意的,该方程总存在唯一的实数解,则实数的取值范围是()A. B. C. D.3.若函数,函数有3个零点,则k的取值范围是()A.(0,1) B. C. D.4.复数(为虚数单位)的共轭复数是()A. B. C. D.5.曲线与轴所围成的封闭图形的面积为()A.2 B. C. D.46.若直线是曲线的切线,则()A. B.1 C.2 D.7.某创业公司共有36名职工,为了了解该公司职工的年龄构成情况,随机采访了9位代表,将数据制成茎叶图如图,若用样本估计总体,年龄在内的人数占公司总人数的百分比是(精确到)()A. B. C. D.8.已知二项式的展开式的第二项的系数为,则()A. B. C.或 D.或9.一次数学考试后,甲说:我是第一名,乙说:我是第一名,丙说:乙是第一名。丁说:我不是第一名,若这四人中只有一个人说的是真话且获得第一名的只有一人,则第一名的是()A.甲 B.乙 C.丙 D.丁10.设函数是定义在上的偶函数,且,若,则A. B. C. D.11.随机变量服从正态分布,则的最小值为()A. B. C. D.12.动点在圆上移动时,它与定点连线的中点的轨迹方程是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知随机变量的分布列如下,那么方差_____.01214.在中,已知,则的值为________.15.的展开式的第3项为______.16.复数(为虚数单位)的共轭复数为,则_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知二次函数(均为实数),满足,对于任意实数都有,并且当时,有.(1)求的值;并证明:;(2)当且取得最小值时,函数(为实数)单调递增,求证:.18.(12分)(1)已知复数满足,的虚部为,求复数;(2)求曲线、直线及两坐标轴围成的图形绕轴旋转一周所得几何体的体积.19.(12分)已知函数.(1)求的单调区间和极值;(2)求曲线在点处的切线方程.20.(12分)已知椭圆的右顶点为,定点,直线与椭圆交于另一点.(Ⅰ)求椭圆的标准方程;(Ⅱ)试问是否存在过点的直线与椭圆交于两点,使得成立?若存在,请求出直线的方程;若不存在,请说明理由.21.(12分)如图,等高的正三棱锥P-ABC与圆锥SO的底面都在平面M上,且圆O过点A,又圆O的直径AD⊥BC,垂足为E,设圆锥SO的底面半径为1,圆锥体积为.(1)求圆锥的侧面积;(2)求异面直线AB与SD所成角的大小;(3)若平行于平面M的一个平面N截得三棱锥与圆锥的截面面积之比为,求三棱锥的侧棱PA与底面ABC所成角的大小.22.(10分)已知函数,.(1)若,求的取值范围;(2)若的图像与相切,求的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】分析:利用互为逆否的两个命题同真同假的原来,当对不成立时,则对也不成立,即可得到答案.详解:由题意可知,原命题成立的逆否命题成立,命题对不成立时,则对也不成立,否则当时命题成立,由已知必推得也成立,与当时命题不成立矛盾,故选A.点睛:本题主要考查了数学归纳法以及归纳法的性质,互为逆否的两个命题同真同假的性质应用,其中正确四种命题的关系是解答的关键,着重考查了推理与论证能力,属于基础题.2、B【解题分析】由成立,得,设,,则则时,,函数单调递减;时,,函数单调递增;且,使得对于任意,对任意的,方程存在唯一的解,则,即,即,所以,所以实数得取值范围是,故选B.点睛:本题主要考查了导数在函数中的综合应用问题,其中解得中涉及到利用导数研究函数的单调性,利用导数研究函数的最值和函数与方程等知识点的综合应用,试题有一定的难度,属于难题,解答中把方程存在唯一的解转化为函数的最值问题是解答的关键.3、A【解题分析】

画出的图像,有3个零点等价于有3个交点。【题目详解】有3个零点等价于有3个交点记则过原点作的切线,有3个零点等价于有3个交点记则过原点作的切线,设切点为则切线方程为:,又切线过原点,即,将,,代入解得,所以切线斜率所以【题目点拨】本题考查根的存在性及根的个数判断,考查了函数零点个数的问题,属于中档题。4、B【解题分析】

根据复数除法运算,化简复数,再根据共轭复数概念得结果【题目详解】,故的共轭复数.故选B.【题目点拨】本题考查复数除法运算以及共轭复数概念,考查基本分析求解能力,属基础题.5、D【解题分析】

曲线与轴所围成图形的面积,根据正弦函数的对称性,就是求正弦函数在上的定积分的两倍.【题目详解】解:曲线与轴所围成图形的面积为:.故选:.【题目点拨】本题考查了定积分,考查了微积分基本定理,求解定积分问题,关键是找出被积函数的原函数,属于基础题.6、C【解题分析】

设切点坐标,求导数,写出切线斜率,由切线过点,求出切点坐标,得切线斜率.【题目详解】直线过定点,设,切点为,,,∴切线方程为,又切点过点,∴,解得.∴.故选:C.【题目点拨】本题考查导数的几何意义,在未知切点时,一般先设切点坐标,由导数得出切线方程,再结合已知条件求出切点坐标,得切线方程.7、A【解题分析】

求出样本平均值与方差,可得年龄在内的人数有5人,利用古典概型概率公式可得结果.【题目详解】,,年龄在内,即内的人数有5人,所以年龄在内的人数占公司总人数的百分比是等于,故选A.【题目点拨】样本数据的算术平均数公式.样本方差公式,标准差.8、A【解题分析】分析:根据第二项系数,可求出;由定积分基本性质,求其原函数为,进而通过微积分基本定理求得定积分值。详解:展开式的第二项为所以系数,解得所以所以选A点睛:本题考查了二项式定理和微积分基本定理的综合应用,通过方程确定参数的取值,综合性强,属于中档题。9、C【解题分析】

通过假设法来进行判断。【题目详解】假设甲说的是真话,则第一名是甲,那么乙说谎,丙也说谎,而丁说的是真话,而已知只有一个人说的是真话,故甲说的不是真话,第一名不是甲;假设乙说的是真话,则第一名是乙,那么甲说谎,丙说真话,丁也说真话,而已知只有一个人说的是真话,故乙说谎,第一名也不是乙;假设丙说的是真话,则第一名是乙,所以乙说真话,甲说谎,丁说的是真话,而已知只有一个人说的是真话,故丙在说谎,第一名也不是乙;假设丁说的是真话,则第一名不是丁,而已知只有一个人说的是真话,那么甲也说谎,说明甲也不是第一名,同时乙也说谎,说明乙也不是第一名,第一名只有一人,所以只有丙才是第一名,故假设成立,第一名是丙。本题选C。【题目点拨】本题考查了推理能力。解决此类问题的基本方法就是假设法。10、D【解题分析】

根据函数的奇偶性求出和的值即可得到结论.【题目详解】是定义在上的偶函数,,,即,则,故选D.【题目点拨】本题主要考查函数值的计算,以及函数奇偶性的应用,意在考查灵活应用所学知识解答问题的能力,属于基础题.11、D【解题分析】

利用正态密度曲线的对称性得出,再将代数式与相乘,展开后可利用基本不等式求出的最小值.【题目详解】由于,由正态密度曲线的对称性可知,,所以,,即,,由基本不等式可得,当且仅当,即当时,等号成立,因此,的最小值为,故选D.【题目点拨】本题考查正态密度概率以及利用基本不等式求最值,解题关键在于利用正态密度曲线的对称性得出定值,以及对所求代数式进行配凑,以便利用基本不等式求最值,考查计算能力,属于中等题.12、B【解题分析】

设连线的中点为,再表示出动点的坐标,代入圆化简即可.【题目详解】设连线的中点为,则因为动点与定点连线的中点为,故,又在圆上,故,即即故选:B【题目点拨】本题主要考查了轨迹方程的一般方法,属于基础题型.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

由离散型随机变量的分布列的性质求出,然后求出,即可求出.【题目详解】解:由离散型随机变量的分布列的性质得:,解得:,所以,所以.故答案为:.【题目点拨】本题考查离散型随机变量方差的求法,是基础题,注意离散型随机变量的分布列的性质的合理运用.14、0【解题分析】

通过展开,然后利用已知可得,于是整理化简即可得到答案.【题目详解】由于,因此,所以,即,所以,则,故答案为0.【题目点拨】本题主要考查三角函数诱导公式的运用,意在考查学生的基础知识,难度中等.15、【解题分析】

利用二项式定理展开式,令可得出答案.【题目详解】的展开式的第项为,故答案为.【题目点拨】本题考查二项式指定项,解题时充分利用二项式定理展开式,考查计算能力,属于基础题.16、2【解题分析】

根据直接求解即可.【题目详解】本题正确结果:【题目点拨】本题考查复数模的求解,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)答案见解析;(2)证明见解析【解题分析】试题分析:(1)由函数的解析式可得,结合均值不等式的结论可得.(2)由题意讨论二次函数的对称轴和单调性即可证得题中的结论.试题解析:(1)由题意,即,又,∴,则恒成立∴,∴.(2)由(1)可得,当且仅当时取等号此时,要使其在区间内单调递增,必有对称轴与其关系为,即为所证.18、(1)或;(2).【解题分析】分析:(1)设,由已知条件得,,再结合的虚部为,即可求出;(2)本题要求的是一个旋转体的体积,看清组成图形的最主要的曲线,和组成图形的两个端点处的数据,用定积分写出体积的表示形式,得到结果.详解:(1)设,由已知条件得,,∵的虚部为,∴,∴或,即或.(2).点睛:本题考查了复数的运算,考查了用定积分求几何体的体积.19、(1)极大值为,极小值为(2)【解题分析】

试题分析:(Ⅰ)由求导公式和法则求出f′(x),求出方程f′(x)=0的根,根据二次函数的图象求出f′(x)<0、f′(x)>0的解集,由导数与函数单调性关系求出f(x)的单调区间和极值;(Ⅱ)由导数的几何意义求出f′(0):切线的斜率,由解析式求出f(0)的值,根据点斜式求出曲线在点(0,f(0))处的切线方程,再化为一般式方程试题解析:(1),,.①当时,;②当时,.当变化时,,的变化情况如下表:当时,有极大值,并且极大值为当时,有极小值,并且极小值为(2),.考点:利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值20、(Ⅰ);(Ⅱ)存在,或【解题分析】

(1)由已知可得,再将点代入椭圆方程,求出即可;(2)设,由已知可得,结合,可得,从而有,验证斜率不存在时是否满足条件,当斜率存在时,设其方程为,与椭圆方程联立,根据根与系数关系,得出关系式,结合,即可求解.【题目详解】(Ⅰ)由椭圆的右顶点为知,.把点坐标代入椭圆方程,得.解得.所以椭圆的标准方程为.(Ⅱ),所以.由,得,即,所以.设,,则,,所以.①当直线的斜率不存在时,直线的方程为,,这与矛盾.②当直线的斜率存在时,设直线的方程为.联立方程得.,.由可得,,即.整理得.解得.综上所述,存在满足条件的直线,其方程为或.【题目点拨】本题考查椭圆的标准方程、直线与椭圆的位置关系,要熟练应用根与系数关系设而不求方法解决相交弦问题,考查计算求解能力,属于中档题.21、(1);(2);(3)【解题分析】

(1)利用圆锥体积可求得圆锥的高,进而得到母线长,根据圆锥侧面积公式可求得结果;(2)作交圆锥底面圆于点,则即为异面直线与所成角,在中,求解出三边长,利用余弦定理可求得,从而得到结果;(3)根据截面面积之比可得底面积之比,求得,进而求得等边三角形的边长,利用正棱锥的特点可知若为的中心,则即为侧棱与底面所成角,在中利用正切值求得结果.【题目详解】(1)设圆锥高为,母线长为由圆锥体积得:圆锥的侧面积:(2)作交圆锥底面圆于点,连接,则即为异面直线与所成角由题意知:,,又即异面直线与所成角为:(3)平行于平面M的一个平面N截得三棱锥与圆锥的截面面积之比为又,即为边长为的等边三角形设为的中心,连接,则三棱锥为正三棱锥平面即为侧棱与底面所成角即侧棱与底面所成角为:【题目点拨】本题考查圆锥侧面积的求解、异面直线所成角的求解、直线与平面所成角的求解.解决立体几何中的角度问题的关键是能够通过平移找到异面直线所成角、通过找到直线在平面内的投影,得到线面角.22、(1);(2)1【解题分析】

(1)由题意可得,设,求得导数和单调性、极值和最值,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论