云南省普洱市二中2024届高二数学第二学期期末统考试题含解析_第1页
云南省普洱市二中2024届高二数学第二学期期末统考试题含解析_第2页
云南省普洱市二中2024届高二数学第二学期期末统考试题含解析_第3页
云南省普洱市二中2024届高二数学第二学期期末统考试题含解析_第4页
云南省普洱市二中2024届高二数学第二学期期末统考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省普洱市二中2024届高二数学第二学期期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.5名同学在“五一”的4天假期中,随便选择一天参加社会实践,不同的选法种数是()A. B. C. D.2.杨辉三角,是二项式系数在三角形中的一种几何排列.在欧洲,这个表叫做帕斯卡三角形,帕斯卡(1623-1662)是在1654年发现这一规律的.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,这是我国数学史上的一个伟大成就.如图所示,在“杨辉三角”中,去除所有为1的项,依次构成数列,则此数列前135项的和为()A. B. C. D.3.已知双曲线,两条渐近线与圆相切,若双曲线的离心率为,则的值为()A. B. C. D.4.从4台甲型和5台乙型电视机中任取出3台,在取出的3台中至少有甲型和乙型电视机各一台,则不同取法共有()A.140种 B.80种 C.70种 D.35种5.已知函数在区间上是增函数,则实数的取值范围是()A. B. C. D.6.设:实数,满足,且;:实数,满足;则是的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.复数为虚数单位)的虚部为()A. B. C. D.8.设,,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件9.设函数是定义在上的偶函数,且,若,则A. B. C. D.10.已知复数满足,则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.在某互联网大会上,为了提升安全级别,将5名特警分配到3个重要路口执勤,每个人只能选择一个路口,每个路口最少1人,最多3人,且甲和乙不能安排在同一个路口,则不同的安排方法有()A.180种 B.150种 C.96种 D.114种12.10名运动员中有2名老队员和8名新队员,现从中选3人参加团体比赛,要求老队员至多1人入选且新队员甲不能入选的选法有()A.77种 B.144种 C.35种 D.72种二、填空题:本题共4小题,每小题5分,共20分。13.若的展开式中的系数是,则.14.已知复数满足方程,则的最小值为____________.15.已知P是椭圆上的一点,F1,F2是椭圆的两个焦点,且∠F1PF2=60°,则△F1PF2的面积是______.16.已知双曲线的左、右焦点分别为、,是双曲线上一点,且轴,若的内切圆半径为,则其渐近线方程是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)一种抛硬币游戏的规则是:抛掷一枚硬币,每次正面向上得1分,反面向上得2分.(1)设抛掷5次的得分为,求的分布列和数学期望;(2)求恰好得到分的概率.18.(12分)由甲、乙、丙三个人组成的团队参加某项闯关游戏,第一关解密码锁,3个人依次进行,每人必须在1分钟内完成,否则派下一个人.3个人中只要有一人能解开密码锁,则该团队进入下一关,否则淘汰出局.根据以往100次的测试,分别获得甲、乙解开密码锁所需时间的频率分布直方图.(1)若甲解开密码锁所需时间的中位数为47,求a、b的值,并分别求出甲、乙在1分钟内解开密码锁的频率;(2)若以解开密码锁所需时间位于各区间的频率代替解开密码锁所需时间位于该区间的概率,并且丙在1分钟内解开密码锁的概率为0.5,各人是否解开密码锁相互独立.①求该团队能进入下一关的概率;②该团队以怎样的先后顺序派出人员,可使所需派出的人员数目X的数学期望达到最小,并说明理由.19.(12分)某市为迎接“国家义务教育均衡发展”综合评估,市教育行政部门在全市范围内随机抽取了所学校,并组织专家对两个必检指标进行考核评分.其中分别表示“学校的基础设施建设”和“学校的师资力量”两项指标,根据评分将每项指标划分为(优秀)、(良好)、(及格)三个等级,调查结果如表所示.例如:表中“学校的基础设施建设”指标为等级的共有所学校.已知两项指标均为等级的概率为0.21.(1)在该样本中,若“学校的基础设施建设”优秀率是0.4,请填写下面列联表,并根据列联表判断是否有的把握认为“学校的基础设施建设”和“学校的师资力量”有关;师资力量(优秀)师资力量(非优秀)合计基础设施建设(优秀)基础设施建设(非优秀)合计(2)在该样本的“学校的师资力量”为等级的学校中,若,记随机变量,求的分布列和数学期望.附:20.(12分)等差数列的前项和为,求数列前项和.21.(12分)高尔顿(钉)板是在一块竖起的木板上钉上一排排互相平行、水平间隔相等的圆柱形铁钉(如图),并且每一排钉子数目都比上一排多一个,一排中各个钉子恰好对准上面一排两相邻铁钉的正中央.从入口处放入一个直径略小于两颗钉子间隔的小球,当小球从两钉之间的间隙下落时,由于碰到下一排铁钉,它将以相等的可能性向左或向右落下,接着小球再通过两铁钉的间隙,又碰到下一排铁钉.如此继续下去,在最底层的5个出口处各放置一个容器接住小球.(Ⅰ)理论上,小球落入4号容器的概率是多少?(Ⅱ)一数学兴趣小组取3个小球进行试验,设其中落入4号容器的小球个数为,求的分布列与数学期望.22.(10分)已知中,三个内角,,所对的边分别为,,,满足.(1)求;(2)若,的面积为,求,的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

根据乘法原理得到答案.【题目详解】5名同学在“五一”的4天假期中,随便选择一天参加社会实践,不同的选法种数是答案为D【题目点拨】本题考查了乘法原理,属于简单题.2、A【解题分析】

利用n次二项式系数对应杨辉三角形的第n+1行,然后令x=1得到对应项的系数和,结合等比数列和等差数列的公式进行转化求解即可.【题目详解】n次二项式系数对应杨辉三角形的第n+1行,例如(x+1)2=x2+2x+1,系数分别为1,2,1,对应杨辉三角形的第3行,令x=1,就可以求出该行的系数之和,第1行为20,第2行为21,第3行为22,以此类推即每一行数字和为首项为1,公比为2的等比数列,则杨辉三角形的前n项和为Sn2n﹣1,若去除所有的为1的项,则剩下的每一行的个数为1,2,3,4,……,可以看成一个首项为1,公差为1的等差数列,则Tn,可得当n=15,在加上第16行的前15项时,所有项的个数和为135,由于最右侧为2,3,4,5,……,为首项是2公差为1的等差数列,则第16行的第16项为17,则杨辉三角形的前18项的和为S18=218﹣1,则此数列前135项的和为S18﹣35﹣17=218﹣53,故选:A.【题目点拨】本题主要考查归纳推理的应用,结合杨辉三角形的系数与二项式系数的关系以及等比数列等差数列的求和公式是解决本题的关键,综合性较强,难度较大.3、A【解题分析】

先由离心率确定双曲线的渐近线方程,再由渐近线与圆相切,列出方程,求解,即可得出结果.【题目详解】渐近线方程为:,又因为双曲线的离心率为,,所以,故渐近线方程为,因为两条渐近线与圆相切,得:,解得;故选A。【题目点拨】本题主要考查由直线与圆的位置关系求出参数,以及由双曲线的离心率求渐近线方程,熟记双曲线的简单性质,以及直线与圆的位置关系即可,属于常考题型.4、C【解题分析】

按照选2台甲型1台乙型,或是1台甲型2台乙型,分别计算组合数.【题目详解】由题意可知可以选2台甲型1台乙型,有种方法,或是1台甲型2台乙型,有种方法,综上可知,共有30+40=70种方法.故选:C【题目点拨】本题考查组合的应用,分步,分类计算原理,重点考查分类讨论的思想,计算能力,属于基础题型.5、D【解题分析】分析:求出导函数,利用函数的单调性,推出不等式,利用基本不等式求解函数的最值,推出结果即可.详解:函数,可得f′(x)=x2﹣mx+1,函数在区间[1,2]上是增函数,可得x2﹣mx+1≥0,在区间[1,2]上恒成立,可得m≤x+,x+≥2=1,当且仅当x=2,时取等号、可得m≤1.故选:D.点睛:本题考查函数的导数的应用,考查最值的求法,基本不等式的应用,考查转化思想以及计算能力.函数在一个区间上单调递增,则函数的导函数大于等于0恒成立,函数在一个区间上存在单调增区间,则函数的导函数在这个区间上大于0有解.6、A【解题分析】

利用充分必要性定义及不等式性质即可得到结果.【题目详解】当,且时,显然成立,故充分性具备;反之不然,比如:a=100,b=0.5满足,但推不出,且,故必要性不具备,所以是的充分不必要条件.故选A【题目点拨】本题考查了不等式的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.7、B【解题分析】

由虚数的定义求解.【题目详解】复数的虚部是-1.故选:B.【题目点拨】本题考查复数的概念,掌握复数的概念是解题基础.8、A【解题分析】

由,可推出,可以判断出中至少有一个大于1.由可以推出,与1的关系不确定,这样就可以选出正确答案.【题目详解】因为,所以,,,显然中至少有一个大于1,如果都小于等于1,根据不等式的性质可知:乘积也小于等于1,与乘积大于1不符.由,可得,与1的关系不确定,显然由“”可以推出,但是由推不出,当然可以举特例:如,符合,但是不符合,因此“”是“”的充分不必要条件,故本题选A.【题目点拨】本题考查了充分不必要条件的判断,由,,,判断出中至少有一个大于1,是解题的关键.9、D【解题分析】

根据函数的奇偶性求出和的值即可得到结论.【题目详解】是定义在上的偶函数,,,即,则,故选D.【题目点拨】本题主要考查函数值的计算,以及函数奇偶性的应用,意在考查灵活应用所学知识解答问题的能力,属于基础题.10、A【解题分析】

分析:利用复数的除法运算法则:分子、分母同乘以分母的共轭复数,化简复数,求出的坐标即可得结论.详解:因为,复数的在复平面内对应的点为,位于第一象限,故选A.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.11、D【解题分析】分析:先不管条件甲和乙不能安排在同一个路口,先算出总共的安排方法,再减去甲和乙在同一个路口的情况即可.详解:先不管条件甲和乙不能安排在同一个路口,分两种情况:①三个路口人数情况3,1,1,共有种情况;②三个路口人数情况2,2,1,共有种情况.若甲乙在同一路口,则把甲乙看作一个整体,则相当于将4名特警分配到三个不同的路口,则有种,故甲和乙不能安排在同一个路口,不同的安排方法有种.故选:D.点睛:本题考查排列、组合的实际应用,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.12、A【解题分析】

根据所选3名队员中包含老队员的人数分成两类:(1)只选一名老队员;(2)没有选老队员,分类计数再相加可得.【题目详解】按照老队员的人数分两类:(1)只选一名老队员,则新队员选2名(不含甲)有42;(2)没有选老队员,则选3名新队员(不含甲)有,所以老队员至多1人入选且新队员甲不能入选的选法有:种.故选A.【题目点拨】本题考查了分类计数原理,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】

先求出二项式的展开式的通项公式,令的指数等于,求出的值,即可求得展开式中的项的系数,再根据的系数是列方程求解即可.【题目详解】展开式的的通项为,令,的展开式中的系数为,故答案为1.【题目点拨】本题主要考查二项展开式定理的通项与系数,属于简单题.二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.14、【解题分析】

设复数根据复数的几何意义可知的轨迹为圆;再根据点和圆的位置关系,及的几何意义即可求得点到圆上距离的最小值,即为的最小值.【题目详解】复数满足方程,设(),则,在复平面内轨迹是以为圆心,以2为半径的圆;,意义为圆上的点到的距离,由点与圆的几何性质可知,的最小值为,故答案为:.【题目点拨】本题考查了复数几何意义的综合应用,点和圆的位置关系及距离最值的求法,属于中档题.15、【解题分析】

利用余弦定理求出,再求△F1PF2的面积.【题目详解】∵|PF1|+|PF2|=4,,又∵∠F1PF2=60°,由余弦定理可得|F1F2|2=|PF1|2+|PF2|2-2|PF1|·|PF2|cos60°12=(|PF1|+|PF2|)2-2|PF1|·|PF2|-|PF1|·|PF2|,∴,∴.【题目点拨】本题主要考查椭圆的定义和余弦定理,考查三角形面积的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.16、【解题分析】分析:由题意可得A在双曲线的右支上,由双曲线的定义可得|AF1|﹣|AF2|=2a,设Rt△AF1F2内切圆半径为r,运用等积法和勾股定理,可得r=c﹣a,结合条件和渐近线方程,计算即可得到所求.详解:由点A在双曲线上,且AF2⊥x轴,可得A在双曲线的右支上,由双曲线的定义可得|AF1|﹣|AF2|=2a,设Rt△AF1F2内切圆半径为r,运用面积相等可得S=|AF2|•|F1F2|=r(|AF1|+|AF2|+|F1F2|),由勾股定理可得|AF2|2+|F1F2|2=|AF1|2,解得r=,,即∴渐近线方程是,故答案为:.点睛:本题主要考查双曲线的定义及简单的几何性质、数形结合思想的应用,属于难题.数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,是中学数学四种重要的数学思想之一,尤其在解决选择题、填空题是发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是将已知函数的性质研究透,这样才能快速找准突破点.充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解题分析】

(1)抛掷5次的得分可能为,且正面向上和反面向上的概率相等,都为,所以得分的概率为,即可得分布列和数学期望;(2)令表示恰好得到分的概率,不出现分的唯一情况是得到分以后再掷出一次反面.,因为“不出现分”的概率是,“恰好得到分”的概率是,因为“掷一次出现反面”的概率是,所以有,即,所以是以为首项,以为公比的等比数列,即求得恰好得到分的概率.【题目详解】(1)所抛5次得分的概率为,其分布列如下(2)令表示恰好得到分的概率,不出现分的唯一情况是得到分以后再掷出一次反面.因为“不出现分”的概率是,“恰好得到分”的概率是,因为“掷一次出现反面”的概率是,所以有,即.于是是以为首项,以为公比的等比数列.所以,即.恰好得到分的概率是.【题目点拨】此题考查了独立重复试验,数列的递推关系求解通项,重点考查了学生的题意理解能力及计算能力.18、(1),,甲、乙在1分钟内解开密码锁的频率分别是0.9,0.7;(2)①0.985;②先派出甲,再派乙,最后派丙.【解题分析】

(1)根据频率分布直方图中左右两边矩形面积均为计算出中位数,可得出、的值,再分别计算甲、乙在分钟内解开密码锁的频率值;(2)①利用独立事件概率的乘法公式可计算出所求事件的概率;②分别求出先派甲和先派乙时随机变量的数学期望,比较它们的大小,即可得出结论.【题目详解】(1)甲解开密码锁所需时间的中位数为47,,解得;,解得;∴甲在1分钟内解开密码锁的频率是;乙在1分钟内解开密码锁的频率是;(2)由(1)知,甲在1分钟内解开密码锁的频率是0.9,乙是0.7,丙是0.5,且各人是否解开密码锁相互独立;①令“团队能进入下一关”的事件为,“不能进入下一关”的事件为,,∴该团队能进入下一关的概率为;②设按先后顺序自能完成任务的概率分别p1,p2,p3,且p1,p2,p3互不相等,根据题意知X的取值为1,2,3;则,,,,,若交换前两个人的派出顺序,则变为,由此可见,当时,交换前两人的派出顺序可增大均值,应选概率大的甲先开锁;若保持第一人派出的人选不变,交换后两人的派出顺序,,∴交换后的派出顺序则变为,当时,交换后的派出顺序可增大均值;所以先派出甲,再派乙,最后派丙,这样能使所需派出的人员数目的均值(数学期望)达到最小.【题目点拨】本题考查频率分布直方图中位数的计算、离散型随机变量分布列与数学期望,在作决策时,可以依据数学期望和方差的大小关系来作出决策,考查分析问题的能力,属于难题.19、(1)见解析;(2)见解析.【解题分析】

(1)依题意求得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论