版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省嘉兴市重点名校高二数学第二学期期末统考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若复数是纯虚数,则实数的值为()A.1或2 B.或2 C. D.22.若焦点在轴上的双曲线的焦距为,则等于()A. B. C. D.3.三棱锥中,,,为的中点,分别交,于点、,且,则三棱锥体积的最大值为()A. B. C. D.4.平面向量与的夹角为,则()A.4 B.3 C.2 D.5.执行如图所示的程序框图,若输入m=1,n=3,输出的x=1.75,则空白判断框内应填的条件为()A. B. C. D.6.已知函数(为自然对数的底数),,若对于任意的,总存在,使得成立,则实数的取值范围为()A.B.C.D.7.(+)(2-)5的展开式中33的系数为A.-80 B.-40 C.40 D.808.设点和直线分别是双曲线的一个焦点和一条渐近线,若关于直线的对称点恰好落在双曲线上,则该双曲线的离心率为()A.2 B. C. D.9.设函数在区间上有两个极值点,则的取值范围是A. B. C. D.10.对于实数和,定义运算“*”:设,且关于的方程为恰有三个互不相等的实数根、、,则的取值范围是()A.B.C.D.11.过抛物线的焦点的直线交抛物线于两点,其中点,且,则()A. B. C. D.12.在复平面内,复数的对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题:本题共4小题,每小题5分,共20分。13.若正方体的表面积为,则它的外接球的表面积为________.14.若对于任意实数x,都有,则的值为_________.15.已知函数,其中为实数,若对恒成立,且,则的单调递增区间是______.16.在平面直角坐标系中,已知点是椭圆:上第一象限的点,为坐标原点,,分别为椭圆的右顶点和上顶点,则四边形的面积的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)(1)已知命题:实数满足,命题:实数满足方程表示的焦点在轴上的椭圆,且是的充分不必要条件,求实数的取值范围;(2)设命题:关于的不等式的解集是;:函数的定义域为.若是真命题,是假命题,求实数的取值范围.18.(12分)某研究机构对高三学生的记忆力和判断力进行统计分析,得下表数据:(1)请根据上表提供的数据,用相关系数说明与的线性相关程度;(结果保留小数点后两位,参考数据:)(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)试根据求出的线性回归方程,预测记忆力为9的同学的判断力.参考公式:,;相关系数;19.(12分)如图,某军舰艇位于岛的的正西方处,且与岛的相距12海里.经过侦察发现,国际海盗船以10海里/小时的速度从岛屿出发沿北偏东30°方向逃窜,同时,该军舰艇从处出发沿北偏东的方向匀速追赶国际海盗船,恰好用2小时追上.(1)求该军舰艇的速度.(2)求的值.20.(12分)已知函数,且函数在和处都取得极值.(1)求,的值;(2)求函数的单调递增区间.21.(12分)已知等差数列满足:,.的前n项和为.(Ⅰ)求及;(Ⅱ)令(),求数列的前项和.22.(10分)已知函数().(Ⅰ)若在处的切线过点,求的值;(Ⅱ)若恰有两个极值点,().(ⅰ)求的取值范围;(ⅱ)求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
根据纯虚数的定义可得2m2﹣3m﹣2=0且m2﹣3m+2≠0然后求解.【题目详解】∵复数z=(2m2﹣3m﹣2)+(m2﹣3m+2)i是纯虚数∴2m2﹣3m﹣2=0且m2﹣3m+2≠0∴m故选C.【题目点拨】本题主要考查了纯虚数的概念,解题的关键是要注意m2﹣3m+2≠0,属于基础题.2、B【解题分析】分析:根据题意,由焦点的位置可得,又由焦距为,即,再由双曲线的几何性质可得,即可求得.详解:根据题意,焦点在轴上的双曲线,则,即,又由焦距为,即,则有,解得.故选:B.点睛:本题考查双曲线的几何性质,注意双曲线的焦点在y轴上,先求出a的范围.3、B【解题分析】
由已知可知,是正三角形,从而,,进而,是的平分线,,由此能求出三棱锥体积的最大值.【题目详解】由题意得,,所以是正三角形,分别交,于点、,,,,,,,是的平分线,,以为原点,建立平面直角坐标系,如图:设,则,整理得,,因此三棱锥体积的最大值为.故选:B【题目点拨】本题考查了三棱锥的体积公式,考查了学生的空间想象能力,属于中档题.4、C【解题分析】
根据条件,得出向量的坐标,进行向量的和的计算,遂得到所求向量的模.【题目详解】由题目条件,两向量如图所示:可知则答案为2.【题目点拨】本题考查了向量的坐标和线性加法运算,属于基础题.5、B【解题分析】当第一次执行,返回,第二次执行,返回,第三次,,要输出x,故满足判断框,此时,故选B.点睛:本题主要考查含循环结构的框图问题.属于中档题.处理此类问题时,一般模拟程序的运行,经过几次运算即可跳出循环结束程序,注意每次循环后变量的变化情况,寻找规律即可顺利解决,对于运行次数比较多的循环结构,一般能够找到周期或规律,利用规律或周期确定和时跳出循环结构,得到问题的结果.6、A【解题分析】,在区间上为增函数,在区间上为减函数.,,又,则函数在区间上的值域为.当时,函数在区间上的值域为.依题意有,则有,得.当时,函数在区间上的值域为,不符合题意.当时,函数在区间上的值域为.依题意有,则有,得.综合有实数的取值范围为.选A.点睛:利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.7、C【解题分析】,由展开式的通项公式可得:当时,展开式中的系数为;当时,展开式中的系数为,则的系数为.故选C.【名师点睛】(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.8、C【解题分析】
取双曲线的左焦点为,设右焦点为,为渐近线,与渐近线的交点为关于直线的对称点设为,连接,运用三角形的中位线定理和双曲线的定义,离心率公式,计算可得所求值.【题目详解】如图所示,取双曲线的左焦点为,设右焦点为,为渐近线,与渐近线的交点为关于直线的对称点设为,连接,直线与线段的交点为,因为点与关于直线对称,则,且为的中点,所以,根据双曲线的定义,有,则,即,所以,故选:C.【题目点拨】本题主要考查了双曲线的离心率的求法,注意运用三角形的中位线定理和双曲线的定义,考查化简整理的运算能力,属于中档题.9、D【解题分析】令,则在上有两个不等实根,有解,故,点晴:本题主要考查函数的单调性与极值问题,要注意转化,函数()在区间上有两个极值点,则在上有两个不等实根,所以有解,故,只需要满足解答此类问题,应该首先确定函数的定义域,注意分类讨论和数形结合思想的应用10、A【解题分析】试题分析:当时,即当时,,当时,即当时,,所以,如下图所示,当时,,当时,,当直线与曲线有三个公共点时,,设,则且,,且,所以,因此,所以,,故选A.考点:1.新定义;2.分段函数;3.函数的图象与零点11、C【解题分析】
由已知可得,再由,即可求出结论.【题目详解】因为抛物线的准线为,点在抛物线上,所以,.故选:C【题目点拨】本题考查抛物线的标准方程,应用焦半径公式是解题的关键,属于基础题.12、D【解题分析】
化简复数,再判断对应象限.【题目详解】,对应点位于第四象限.故答案选D【题目点拨】本题考查了复数的计算,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
由正方体的外接球的直径与正方体的棱长之间的关系求解.【题目详解】由已知得正方体的棱长为,又因为正方体的外接球的直径等于正方体的体对角线的长,所以正方体的外接球的半径,所以外接球的表面积,故得解.【题目点拨】本题考查正方体的外接球,属于基础题.14、【解题分析】
根据题意,分析可得,求出其展开式,可得为其展开式中含项的系数,由二项式定理求出项,分析可得答案.【题目详解】解:根据题意,,其展开式的通项为,又由,则为其展开式中含项的系数,令可得:;即;故答案为:.【题目点拨】本题考查二项式定理的应用,注意二项式定理的形式,属于基础题.15、【解题分析】
根据题设条件得出是函数的最大值或最小值,从而得到,结合,最后得到,再根据正弦函数的单调性得到所求函数的单调增区间.【题目详解】解:若对恒成立,则等于函数的最大值或最小值,即,则,又,即令,此时,满足条件令,解得.则的单调递增区间是.故答案为:.【题目点拨】本题考查的重点是三角函数的单调区间以及形式变换,需要重点掌握.16、【解题分析】分析:的面积的最大值当到直线距离最远的时候取得。详解:,当到直线距离最远的时候取得的最大值,设直线,所以,故的最大值为。点睛:分析题意,找到面积随到直线距离的改变而改变,建立面积与到直线距离的函数表达式,利用椭圆的参数方程求解距离的最值。本题还可以用几何法分析与直线平行的直线与椭圆相切时,为切点,到直线距离最大。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】分析:(1)利用一元二次不等式的解法化简,利用椭圆的标准方程化简,由包含关系列不等式求解即可;(2)化简命题可得,化简命题可得,由为真命题,为假命题,可得一真一假,分两种情况讨论,对于真假以及假真分别列不等式组,分别解不等式组,然后求并集即可求得实数的取值范围.详解:(1)由得:,即命题由表示焦点在轴上的椭圆,可得,解得,即命题.因为是的充分不必要条件,所以或解得:,∴实数的取值范围是.(2)解:命题为真命题时,实数的取值集合为对于命题:函数的定义域为的充要条件是①恒成立.当时,不等式①为,显然不成立;当时,不等式①恒成立的条件是,解得所以命题为真命题时,的取值集合为由“是真命题,是假命题”,可知命题、一真一假当真假时,的取值范围是当假真时,的取值范围是综上,的取值范围是.点睛:本题主要考查根据命题真假求参数范围、一元二次不等式的解法、指数函数的性质、函数的定义域,属于中档题.解答非命题、且命题与或命题真假有关的题型时,应注意:(1)原命题与其非命题真假相反;(2)或命题“一真则真”;(3)且命题“一假则假”.18、(1)见解析;(2);(2)3【解题分析】分析:(1)计算出相关系数即得;(2)根据所给公式计算出回归直线方程的系数可得回归直线方程;(2)代入(2)中回归直线方程可得预测值.详解:(1)6×2+8×2+10×5+12×6=158,==9,==3,62+82+102+122=1.,线性相关性非常强.(2)158,=9,=3,1.===0.7,=-=3-0.7×9=-2.2,故线性回归方程为=0.7x-2.2.(2)由(2)中线性回归方程知,当x=9时,=0.7×9-2.2=3,故预测记忆力为9的同学的判断力约为3.点睛:本题考查回归分析,考查回归直线方程,解题时只要根据所给数据与公式计算相应的系数就可得出所要结论,本题考查学生的运算求解能力.19、(1)14海里/小时;(2).【解题分析】分析:(1)由题设可以得到的长,在中利用余弦定理可以得到的长,从而得到舰艇的速度;(2)在中利用正弦定理可得的值.详解:(1)依题意知,,,在中,由余弦定理得,解得,所以该军舰艇的速度为海里/小时.(2)在中,由正弦定理,得,即.点睛:与解三角形相关的实际问题中,我们常常碰到方位角、俯角、仰角等,注意它们的差别.另外,把实际问题抽象为解三角形问题时,注意分析三角形的哪些量是已知的,要求的哪些量,这样才能确定用什么定理去解决.20、(1),;(2).【解题分析】
(1)易得和为导函数的两个零点,代入计算即可求得.(2)求导分析的解集即可.【题目详解】(1)∵.∴,∵函数在和处都取得极值,故和为的两根.故.即,(2)由(1)得故当,即时,即,解得或.∴函数的单调递增区间为.【题目点拨】本题主要考查了根据极值点求解参数的问题以及求导分析函数单调增区间的问题.需要根据题意求导,根据极值点为导函数的零点以及导函数大于等于0则原函数单调递增求解集即可.属于中档题.21、(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 体育培训承办协议书
- 位物管服务合同范本
- 20XX-2026年中国选矿球磨机行业市场分析及投资可行性研究报告-图文
- 兄弟房产分摊协议书
- 位围墙维修合同范本
- 全面预算管理与企业战略目标的协同作用
- 钢结构吊装安全方案
- 仲裁协议独立于合同
- 人防工程施工安全与防护措施方案
- pvc质量合同范本
- 2025时事政治热点题库附参考答案
- 2025年老年人驾考三力测试题库及答案
- 2025及未来5年中国人物彩灯市场分析及数据监测研究报告
- 2025消防宣传月启动宣讲课件
- 期中测试卷- 2025-2026学年英语五年级上学期 人教新起点版(含答案解析)
- 电石生产安全技术规定
- 2025至2030中国双臂机器人行业项目调研及市场前景预测评估报告
- 角磨机安全使用规范
- 中意人寿的岗前考试及答案解析
- 数字化技术在职业院校岗位实习管理与质量评价中的应用探究
- 加油站适用的法律法规清单
评论
0/150
提交评论