2024届山东省青岛市重点初中数学高二第二学期期末联考试题含解析_第1页
2024届山东省青岛市重点初中数学高二第二学期期末联考试题含解析_第2页
2024届山东省青岛市重点初中数学高二第二学期期末联考试题含解析_第3页
2024届山东省青岛市重点初中数学高二第二学期期末联考试题含解析_第4页
2024届山东省青岛市重点初中数学高二第二学期期末联考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省青岛市重点初中数学高二第二学期期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在平面几何里有射影定理:设三角形的两边,是点在上的射影,则.拓展到空间,在四面体中,面,点是在面内的射影,且在内,类比平面三角形射影定理,得出正确的结论是()A. B.C. D.2.某校派出5名老师去海口市三所中学进行教学交流活动,每所中学至少派一名教师,则不同的分配方案有()A.80种 B.90种 C.120种 D.150种3.设x=-2与x=4是函数f(x)=x3+ax2+bx的两个极值点,则常数a-b的值为()A.21 B.-21C.27 D.-274.当函数y=x⋅2x取极小值时,A.1ln2 B.-1ln5.抛物线上的点到定点和定直线的距离相等,则的值等于()A. B. C.16 D.6.斐波那契螺旋线,也称“黄金蜾旋线”,是根据斐波那契数列(1,1,2,3,5,8…)画出来的螺旋曲线,由中世纪意大利数学家列奥纳多•斐波那契最先提出.如图,矩形ABCD是以斐波那契数为边长的正方形拼接而成的,在每个正方形中作一个圆心角为90°的圆弧,这些圆弧所连成的弧线就是斐波那契螺旋线的一部分.在矩形ABCD内任取一点,该点取自阴影部分的概率为()A. B. C. D.7.演绎推理“因为时,是的极值点,而对于函数,,所以0是函数的极值点.”所得结论错误的原因是()A.大前提错误 B.小前提错误 C.推理形式错误 D.全不正确8.已知复数且,则的范围为()A. B.C. D.9.使不等式成立的一个充分不必要条件是()A. B. C.或 D.10.若复数满足,其中为虚数单位,则在复平面内所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.利用反证法证明“若,则”时,假设正确的是()A.都不为2 B.且都不为2C.不都为2 D.且不都为212.下列函数既是奇函数又在(﹣1,1)上是减函数的是()A. B.C.y=x﹣1 D.y=tanx二、填空题:本题共4小题,每小题5分,共20分。13.已知函数若存在互不相等实数有则的取值范围是______.14.复数(是虚数单位)的虚部是______.15.是正四棱锥,是正方体,其中,,则到平面的距离为________16.若曲线(为常数)不存在斜率为负数的切线,则实数的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若函数有两个不同的零点,求实数的取值范围;(2)若在上恒成立,求实数的取值范围.18.(12分)已知椭圆C:的离心率为,且过点(1)求椭圆C的方程;(2)设直线:交椭圆C于A、B两点,0为坐标原点,求△OAB面积的最大值.19.(12分)设数列的前n项和为已知直角坐标平面上的点均在函数的图像上.(1)求数列的通项公式;(2)若已知点,,为直角坐标平面上的点,且有,求数列的通项公式;(3)在(2)的条件下,若使对于任意恒成立,求实数t的取值范围.20.(12分)已知i为虚数单位,m为实数,复数.(1)m为何值时,z是纯虚数?(2)若,求的取值范围.21.(12分)在△ABC中,a=3,b−c=2,cosB=.(Ⅰ)求b,c的值;(Ⅱ)求sin(B–C)的值.22.(10分)某地区2011年至2017年农村居民家庭人均纯收入(单位:千元)的数据如下表:(I)求关于的线性回归方程;(II)利用(I)中所求的线性回归方程,分析该地区2011年至2017年农村居民家庭人均纯收入的变化情况,并预测该地区2018年农村居民家庭人均纯收入.参考公式:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

由平面图形到空间图形的类比推理中,一般是由点的性质类比推理到线的性质,由线的性质类比推理到面的性质,即可求解,得到答案.【题目详解】由已知在平面几何中,若中,是垂足,则,类比这一性质,推理出:若三棱锥中,面面,为垂足,则.故选A.【题目点拨】本题主要考查了类比推理的应用,其中类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想),着重考查了推理能力,属于基础题.2、D【解题分析】

不同的分配方案有(C3、A【解题分析】

求出导数f′(x).利用x=-2与x=4是函数f(x)两个极值点即为f′(x)=0的两个根.即可求出a、b.【题目详解】由题意知,-2,4是函数f′(x)=0的两个根,f′(x)=3x2+2ax+b,所以⇒所以a-b=-3+24=21.故选A【题目点拨】f′(x)=0的解不一定为函数f(x)的极值点.(需判断此解两边导数值的符号)函数f(x)的极值点一定是f′(x)=0的解.4、B【解题分析】分析:对函数求导,由y'=2x详解:y'=即1+xln2=0,x=-点睛:本题考查利用导数研究函数的极值问题,属于基础题5、C【解题分析】

根据抛物线定义可知,定点为抛物线的焦点,进而根据定点坐标求得.【题目详解】根据抛物线定义可知,定点为抛物线的焦点,且,,解得:.故选:C.【题目点拨】本题考查抛物线的定义,考查对概念的理解,属于容易题.6、B【解题分析】

根据几何概型的概率公式,分别求出阴影部分面积和矩形ABCD的面积,即可求得。【题目详解】由已知可得:矩形的面积为,又阴影部分的面积为,即点取自阴影部分的概率为,故选。【题目点拨】本题主要考查面积型的几何概型的概率求法。7、A【解题分析】分析:要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论及推理形式是否都正确,根据这几个方面都正确,才能得到这个演绎推理正确.根据三段论进行判断即可得到结论.详解:演绎推理““因为时,是的极值点,而对于函数,,所以0是函数的极值点.”中,

大前提:时,在两侧的符号如果不相反,则不是的极值点,故错误,

故导致错误的原因是:大前提错误,

故选:A.点睛:本题考查演绎推理,考查学生分析解决问题的能力,属于基础题8、C【解题分析】

转化为,设,即直线和圆有公共点,联立,即得解.【题目详解】由于设联立:由于直线和圆有公共点,故的范围为故选:C【题目点拨】本题考查了直线和圆,复数综合,考查了学生转化划归,数学运算的能力,属于中档题.9、A【解题分析】

首先解出不等式,因为是不等式成立的一个充分不必要条件,所以满足是不等式的真子集即可.【题目详解】因为,所以或,需要是不等式成立的一个充分不必要条件,则需要满足是的真子集的只有A,所以选择A【题目点拨】本题主要考查了解不等式以及命题之间的关系,属于基础题.10、B【解题分析】分析:把已知等式变形,利用复数代数形式的乘除运算化简,求出的坐标即可得到结论.详解:,,在复平面内所对应的点坐标为,位于第二象限,故选B.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.11、C【解题分析】

根据反证法的知识,选出假设正确的选项.【题目详解】原命题的结论是“都为2”,反证时应假设为“不都为2”.故选:C【题目点拨】本小题主要考查反证法的知识,属于基础题.12、B【解题分析】

对各选项逐一判断即可,利用在上为增函数,在上为减函数,即可判断A选项不满足题意,令,即可判断其在递增,结合复合函数的单调性判断法则即可判断B选项满足题意对于C,D,由初等函数性质,直接判断其不满足题意.【题目详解】解:根据题意,依次分析选项:对于A,在上为增函数,在上为减函数,所以y(3x﹣3﹣x)在R上为增函数,不符合题意;对于B,,所以是奇函数,令,则由,两个函数复合而成又,它在上单调递增所以既是奇函数又在(﹣1,1)上是减函数,符合题意,对于C,y=x﹣1是反比例函数,是奇函数,但它在(﹣1,1)上不是减函数,不符合题意;对于D,y=tanx为正切函数,是奇函数,但在(﹣1,1)上是增函数,不符合题意;故选:B.【题目点拨】本题主要考查了函数奇偶性的判断,还考查了复合函数单调性的判断法则及初等函数的性质,属于中档题。二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

不妨设,根据二次函数对称性求得的值.根据绝对值的定义求得的关系式,将转化为来表示,根据的取值范围,求得的取值范围.【题目详解】不妨设,画出函数的图像如下图所示.二次函数的对称轴为,所以.不妨设,则由得,得,结合图像可知,解得,所以,由于在上为减函数,故.【题目点拨】本小题主要考查分段函数的图像与性质,考查二次函数的图像,考查含有绝对值函数的图像,考查数形结合的数学思想方法,属于中档题.14、【解题分析】

分子和分母同时乘以分母的共轭复数,化简复数,即可求得虚部.【题目详解】复数的虚部是:.故答案为:.【题目点拨】本题主要考查了复数的四则运算,以及复数的基本概念的应用,其中解答中熟练应用复数的运算法则化简是解答的关键,属于基础题.15、【解题分析】

以为轴,为轴,为轴建立空间直角坐标系,求出平面的法向量,的坐标,利用距离公式,即可得到结论.【题目详解】解:以为轴,为轴,为轴建立空间直角坐标系,

设平面的法向量是,

∴由,可得

取得,

∴到平面的距离.故答案为:.【题目点拨】本题考查点到平面的距离,考查向量知识的运用,考查学生的计算能力,属于中档题.16、【解题分析】分析:令y′≥1在(1,+∞)上恒成立可得a,根据右侧函数的值域即可得出a的范围.详解:y′=+2ax,x∈(1,+∞),∵曲线y=lnx+ax2(a为常数)不存在斜率为负数的切线,∴y′=≥1在(1,+∞)上恒成立,∴a≥﹣恒成立,x∈(1,+∞).令f(x)=﹣,x∈(1,+∞),则f(x)在(1,+∞)上单调递增,又f(x)=﹣<1,∴a≥1.故答案为:.点睛:利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】

(1)先对求导,然后分别讨论和时的情况,从而得到的取值范围;(2)可令,再求导,就和两种情况再分别讨论恒成立问题即可得到答案.【题目详解】(1)①当时,恒成立,故在上递增,最多一个零点,不合题意;②当时,,,在上递增,在上递减,且时,,时,故要有两个零点,只需,解得:,综合①、②可知,的范围是:.(2)令,①当,恒成立,在上递增,,符合题意;②当时,在上递增,在上递增,又,若,即时,恒成立,同①,符合题意,若,即时,存在,使,时,,时,,在递减,在上递增,而,故不满足恒成立,综上所述,的范围是:.【题目点拨】本题主要考查利用导函数求解零点中含参问题,恒成立中含参问题,意在考查学生的转化能力,对学生的分类讨论的思想要求较高,难度较大.18、(1);(2).【解题分析】分析:(1)由离心率和过点建立等式方程组求解即可;(2)根据弦长公式可求得AB的长作为三角形的底边,然后由点到直线的距离求得高即可表示三角形的面积表达式,然后根据基本不等式求解最值即可.详解:(1)由已知可得,且,解得,,∴椭圆的方程为.(2)设,,将代入方程整理得,,∴,∴,,,,,,当且仅当时取等号,∴面积的最大值为.点睛:考查椭圆的标准方程,直线与椭圆的位置关系,弦长,点到直线的距离的应用,对常用公式的熟悉是解题关键,属于中档题.19、(1);(2);(3).【解题分析】

(1)先根据点在直线上得和项关系式,再根据和项与通项关系求通项;(2)根据向量平行坐标表示得关系式,代入(1)结论得结果;(3)分奇偶分类讨论,再根据参变分离转化为求对应函数最值,最后根据函数最值得结果.【题目详解】(1)因为点在函数,所以当时,;当时,;(2)(3)为偶数时,,为奇数时,,因此【题目点拨】本题考查由和项求通项、向量平行坐标表示以及不等式恒成立问题,考查综合分析求解能力,属中档题.20、(1);(2)【解题分析】

(1)利用复数代数形式的乘法运算化简,再由实部为0且虚部不为0求解m的值;(2)由复数的几何意义,画出图形,数形结合得答案【题目详解】(1).当时,即时,z是纯虚数;(1)可设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论