2024届山西省临晋中学高二数学第二学期期末教学质量检测试题含解析_第1页
2024届山西省临晋中学高二数学第二学期期末教学质量检测试题含解析_第2页
2024届山西省临晋中学高二数学第二学期期末教学质量检测试题含解析_第3页
2024届山西省临晋中学高二数学第二学期期末教学质量检测试题含解析_第4页
2024届山西省临晋中学高二数学第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山西省临晋中学高二数学第二学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的大致图象为()A. B. C. D.2.已知是虚数单位,若复数满足,则的虚部为()A.-1 B. C.1 D.-33.一个算法的程序框图如图所示,如果输出的值是1,那么输入的值是()A.-1 B.2 C.-1或2 D.1或-24.设函数在上单调递增,则实数的取值范围()A. B. C. D.5.独立性检验显示:在犯错误的概率不超过0.1的前提下认为性别与是否喜爱喝酒有关,那么下列说法中正确的是()A.在100个男性中约有90人喜爱喝酒B.若某人喜爱喝酒,那么此人为女性的可能性为10%C.认为性别与是否喜爱喝酒有关判断出错的可能性至少为10%D.认为性別与是否喜爱喝酒有关判断正确的可能性至少为90%6.已知集合,,则()A. B. C. D.7.函数的单调递增区间是()A. B. C. D.8.甲、乙两人独立地解同一问题,甲解决这个问题的概率是,乙解决这个问题的概率是,那么恰好有1人解决这个问题的概率是()A. B.C. D.9.已知f(x5)=lgx,则f(2)等于()A.lg2B.lg32C.lgD.10.已知m>0,n>0,向量则的最小值是(

)A. B.2 C. D.11.设命题:,,则为()A., B.,C., D.,12.设,当时,不等式恒成立,则的取值范围是A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,则的值为________14.甲、乙等五名志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者,设随机变量为这五名志愿者中参加A岗位服务的人数,则的期望值为________15.一个袋子中装有8个球,其中2个红球,6个黑球,若从袋中拿出两个球,记下颜色,则两个球中至少有一个是红球的概率是________(用数字表示)16.已知球O是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A-BCD的外接球,BC=3,AB=23,点E在线段BD上,且BD=3BE,过点E作圆O的截面,则所得截面圆面积的取值范围是__三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费和年销售量(=1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.

46.6

563

6.8

289.8

1.6

1469

108.8

表中,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)已知这种产品的年利润z与x、y的关系为z=0.2y-x.根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费x=49时,年销售量及年利润的预报值是多少?(ⅱ)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据,,……,,其回归线的斜率和截距的最小二乘估计分别为:18.(12分)如图,斜三棱柱中,侧面为菱形,底面是等腰直角三角形,,C.(1)求证:直线直线;(2)若直线与底面ABC成的角为,求二面角的余弦值.19.(12分)在长方体中,,,,是的中点.(1)求四棱锥的体积;(2)求异面直线与所成角的大小(结果用反三角形函数值表示).20.(12分)若,解关于的不等式.21.(12分)已知等式.(1)求的展开式中项的系数,并化简:;(2)证明:(ⅰ);(ⅱ).22.(10分)某厂生产某产品的年固定成本为250万元,每生产x千件,需另投入成本C(x)(万元),若年产量不足80千件,C(x)的图象是如图的抛物线,此时C(x)<0的解集为(-30,0),且C(x)的最小值是-75,若年产量不小于80千件,C(x)=51x+10000(1)写出年利润L(x)(万元)关于年产量x(千件)的函数解析式;(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】分析:利用函数的解析式,判断大于时函数值的符号,以及小于时函数值的符号,对比选项排除即可.详解:当时,函数,排除选项;当时,函数,排除选项,故选B.点睛:本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.2、D【解题分析】

利用复数代数形式的乘除运算可得z=1﹣3i,从而可得答案.【题目详解】,∴复数z的虚部是-3故选:D【题目点拨】本题考查复数代数形式的乘除运算,属于基础题.3、C【解题分析】

根据条件结构,分,两类情况讨论求解.【题目详解】当时,因为输出的是1,所以,解得.当时,因为输出的是1,所以,解得.综上:或.故选:C【题目点拨】本题主要考查程序框图中的条件结构,还考查了分类讨论的思想和运算求解的能力,属于基础题.4、A【解题分析】分析:求得函数的导数,令,求得函数的递增区间,又由在上单调递增,列出不等式组,即可求解实数的取值范围.详解:由函数,可得,令,即,即,解得,所以函数在上单调递增,又由函数在上单调递增,所以,解得,故选A.点睛:本题主要考查了根据函数的单调性利用导数求解参数的取值范围问题,其中熟记导函数的取值正负与原函数的单调性之间的关系是解答的关键,着重考查了推理与运算能力.5、D【解题分析】

根据独立性检验的含义只能得到出错的可能率或正确的可靠率【题目详解】独立性检验是对两个分类变量有关系的可信程度的判断,而不是因果关系,故A,B错误.由已知得,认为性别与是否喜爱喝酒有关判断出错概率的可能性至多为10%,故C错误,D正确.选D.【题目点拨】本题考查独立性检验的含义,考查基本分析判断能力,属基础题.6、D【解题分析】分析:先化简集合P,Q,再求.详解:由题得,,所以.故答案为:D.点睛:本题主要考查集合的化简与交集运算,意在考查学生对这些知识的掌握水平,属于基础题.7、C【解题分析】

先求得函数的定义域,然后利用导数求得函数的单调递增区间.【题目详解】依题意,函数的定义域为,,故当时,,所以函数的单调递增区间为,故选C.【题目点拨】本小题主要考查利用导数求函数的单调递增区间,考查导数的运算,属于基础题.8、B【解题分析】分析:先分成两个互斥事件:甲解决问题乙未解决问题和甲解决问题乙未解决问题,再分别求概率,最后用加法计算.详解:因为甲解决问题乙未解决问题的概率为p1(1-p2),甲未解决问题乙解决问题的概率为p2(1-p1),则恰有一人解决问题的概率为p1(1-p2)+p2(1-p1).故选B.点睛:本题考查互斥事件概率加法公式,考查基本求解能力.9、D【解题分析】试题分析:令x5=t,则x=(t>0),∴f(t)=lg=.∴f(2)=,故选D.考点:函数值10、C【解题分析】分析:利用向量的数量积为0,求出m,n的方程,然后利用基本不等式求解表达式的最小值即可.详解:m>0,n>0,向量,可得,则,当且仅当时,表达式取得最小值.故选:C.点睛:条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.11、D【解题分析】分析:直接利用特称命题的否定解答.详解:由特称命题的否定得为:,,故答案为:D.点睛:(1)本题主要考查特称命题的否定,意在考查学生对该知识的掌握水平.(2)特称命题,特称命题的否定.12、A【解题分析】∵当时,不等式恒成立∴当时,不等式恒成立令,则∵∴当时,,即在上为减函数当时,,即在上为增函数∴,即令,则∴当时,,即在上为减函数当时,,即在上为增函数∴∵∴或故选A点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立,转化为;(3)若恒成立,可转化为.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】令,得,令,得,则.点睛:本题考查二项式定理的应用;在利用二项式定理求二项展开式的系数和时,往往采用赋值法或整体赋值法,要灵活注意展开式中未知数的系数的特点合理赋值,往往是1,0,或.14、【解题分析】分析:随机变量的可能取的值为1,2,事件“”是指有两人同时参加A岗位服务,由此可得的分布列,进而得到的期望.详解:随机变量的可能取的值为1,2,事件“”是指有两人同时参加A岗位服务,则,.即的分布列如下表所示:的数学期望.故答案为:.点睛:本题考查等可能事件的概率,考查离散型随机变量的概率与分布列和数学期望.15、【解题分析】

根据题意,袋中有2个红球和6个黑球,由组合数公式可得从中取出2个的情况数目,若两个球中至少有一个是红球,即一红一黑,或者两红,由分步计数原理可得其情况数目,由等可能事件的概率,计算可得答案.【题目详解】解:根据题意,袋中有2个红球和6个黑球,共8个球,

从中取出2个,有种情况,

两个球中至少有一个是红球,即一红一黑,或者两红的情况有种,

则两个球中至少有一个是红球的概率为,

故答案为:.【题目点拨】本题考查等可能事件的概率的计算,是简单题,关键在于正确应用排列、组合公式.16、[2π,4π]【解题分析】

设△BDC的中心为O1,球O的半径为R,连接oO1D,OD,O1E,OE,可得R2=3+(3﹣R)2,解得R=2,过点E作圆O的截面,当截面与OE垂直时,截面的面积最小,当截面过球心时,截面面积最大,即可求解.【题目详解】如图,设△BDC的中心为O1,球O的半径为R,连接oO1D,OD,O1E,OE,则O1D=3sin60在Rt△OO1D中,R2=3+(3﹣R)2,解得R=2,∵BD=3BE,∴DE=2在△DEO1中,O1E=3+4-2×∴OE=O过点E作圆O的截面,当截面与OE垂直时,截面的面积最小,此时截面圆的半径为22-2当截面过球心时,截面面积最大,最大面积为4π.故答案为:[2π,4π]【题目点拨】本题考查了球与三棱锥的组合体,考查了空间想象能力,转化思想,解题关键是要确定何时取最值,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ);(Ⅲ)(ⅰ);(ⅱ)46.24【解题分析】

(Ⅰ)由散点图可以判断,适合作为年销售关于年宣传费用的回归方程类型.(Ⅱ)令,先建立关于的线性回归方程,由于=,∴=563-68×6.8=100.6.∴关于的线性回归方程为,∴关于的回归方程为.(Ⅲ)(ⅰ)由(Ⅱ)知,当=49时,年销售量的预报值=576.6,.(ⅱ)根据(Ⅱ)的结果知,年利润z的预报值,∴当=,即时,取得最大值.故宣传费用为46.24千元时,年利润的预报值最大.18、(1)见解析;(2)【解题分析】

(1)先证平面,再证平面,可证直线直线(2)由作AB的垂线,垂足为D,则平面ABC,过A作的平行线,交于E点,则平面ABC,以AB,AC,AE分别为x,y,z轴建立空间直角坐标系,由空间向量法可求得二面角.【题目详解】证明:连接,侧面为菱形,,又C,,平面,,又,,平面,平面,直线直线;解:由知,平面平面,由作AB的垂线,垂足为D,则平面ABC,,得D为AB的中点,过A作的平行线,交于E点,则平面ABC,建立如图所示的空间直角坐标系,设,则为平面的一个法向量,则0,,2,,,设平面的法向量,由,取,得,,故二面角的余弦值为.【题目点拨】利用向量法求二面角的注意事项:(1)两平面的法向量的夹角不一定就是所求的二面角,有可能是两法向量夹角的补角为所求;(2)求平面的法向量的方法有,①待定系数法,设出法向量坐标,利用垂直关系建立坐标的方程,解之即可得法向量;②先确定平面的垂线,然后取相关线段对应的向量,即确定了平面的法向量.19、(1);(2)【解题分析】

(1)先求出,由此能求出四棱锥的体积。(2)以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出异面直线与所成角的大小。【题目详解】(1)在长方体中,,,,是的中点.,四棱锥的体积(2)以为原点,为轴,为轴,为轴,建立空间直角坐标系,则,,,,,,设异面直线与所成角为,则,异面直线与所成角为【题目点拨】本题考查了棱锥的体积公式,解题的关键是熟记棱锥体积公式,同时也考查了用空间直角坐标系求立体几何中异面直线所成的角,此题需要一定的计算能力,属于中档题。20、见解析【解题分析】

本题是含有参数的解不等式,可以先将不等式转化为的形式,再通过分类讨论参数得出解.【题目详解】时,且;时,等价于因为,所以,所以不等式可化简为当时,或.当时,,或综上所述,时,且;0时或时,或}【题目点拨】在解含有参数的不等式的时候,一定要注意参数的取值范围并进行分类讨论.21、(1);(2)(ⅰ)详见解析;(ⅱ)详见解析.【解题分析】

(1)的展开式中含的项的系数为,二项式定理展开,展开得到含项的系数,利用,即可证明;(2)(ⅰ)用组合数的阶

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论