2024届四川省成都市双流区棠湖中学数学高二第二学期期末学业质量监测模拟试题含解析_第1页
2024届四川省成都市双流区棠湖中学数学高二第二学期期末学业质量监测模拟试题含解析_第2页
2024届四川省成都市双流区棠湖中学数学高二第二学期期末学业质量监测模拟试题含解析_第3页
2024届四川省成都市双流区棠湖中学数学高二第二学期期末学业质量监测模拟试题含解析_第4页
2024届四川省成都市双流区棠湖中学数学高二第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省成都市双流区棠湖中学数学高二第二学期期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.一个均匀的正方体,把其中相对的面分别涂上红色、黄色、蓝色,随机向上抛出,正方体落地时“向上面为红色”的概率是A. B. C. D.2.条件,条件,若是的必要不充分条件,则的取值范围是()A. B. C. D.3.数列,满足,,,则数列的前项和为().A. B. C. D.4.不等式的解集是()A.或 B.C.或 D.5.一辆汽车按规律s=at2+1做直线运动,若汽车在t=2时的瞬时速度为12,则a=()A. B.C.2 D.36.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的,则一开始输入的x的值为()A. B. C. D.7.从标有1、2、3、4、5的五张卡片中,依次不放回地抽出2张,则在第一次抽到奇数的情况下,第二次抽到偶数的概率为()A. B. C. D.8.已知等式x4+a1x3+A.(1,2,3,4)B.(0,3,4,0)C.(0,-3,4,-1)D.(-1,0,2,-2)9.已知直线与圆相交所得的弦长为,则圆的半径()A. B.2 C. D.410.已知是椭圆和双曲线的公共焦点,是它们的一个公共点,且,则椭圆和双曲线的离心率乘积的最小值为()A. B. C. D.11.在中,,,,则等于()A. B. C. D.12.用数学归纳法证明“”,从“到”左端需增乘的代数式为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13._________.14.对于实数、,“若,则或”为________命题(填“真”、“假”)15.曲线在点处的切线方程为_______.16.椭圆的焦点坐标是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知复数满足,在复平面上对应点的轨迹为,、分别是曲线的上、下顶点,是曲线上异于、的一点.(1)求曲线的方程;(2)若在第一象限,且,求的坐标;(3)过点作斜率为的直线分别交曲线于另一点,交轴于点.求证:存在常数,使得恒成立,并求出的值.18.(12分)已知圆O1和圆O2的极坐标方程分别为ρ=2,ρ2-2ρcos(θ-)=2.(1)把圆O1和圆O2的极坐标方程化为直角坐标方程.(2)求经过两圆交点的直线的极坐标方程.19.(12分)已知函数当时,求函数的极值;求函数的单调递增区间;当时,恒成立,求实数a的取值范围.20.(12分)如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.(1)证明:平面平面;(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.21.(12分)已知函数.(1)求的单调区间;(2)证明:当时,方程在区间上只有一个解;(3)设,其中.若恒成立,求的取值范围.22.(10分)在直角坐标平面内,直线l过点P(1,1),且倾斜角α=.以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知圆C的极坐标方程为ρ=4sinθ.(1)求圆C的直角坐标方程;(2)设直线l与圆C交于A,B两点,求|PA|·|PB|的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

∵随机抛正方体,有6种等可能的结果,其中正方体落地时“向上面为红色”有2种情况,

∴正方体落地时“向上面为红色”的概率是

.故选B.2、B【解题分析】因为是的必要不充分条件,所以是的必要不充分条件,可以推导出,但是不能推导出,若,则等价于无法推导出;若,则等价于满足条件的为空集,无法推导出;若,则等价于,由题意可知,,,,的取值范围是,故选B.3、D【解题分析】

由题意是数列是等差数列,数列的等比数列,分别求出它们的通项,再利用等比数列前项和公式即可求得.【题目详解】因为,,所以数列是等差数列,数列的等比数列,因此,,数列的前项和为:.故选:.【题目点拨】本题主要考查的是数列的基本知识,等差数列、等比数列的通项公式以及等比数列的求和公式的应用,是中档题.4、D【解题分析】

先求解出不等式,然后用集合表示即可。【题目详解】解:,即,即,故不等式的解集是,故选D。【题目点拨】本题是集合问题,解题的关键是正确求解绝对值不等式和规范答题。5、D【解题分析】

如果物体按s=s(t)的规律运动,那么物体在时刻t的瞬时速度(t),由此可得出答案.【题目详解】由s=at2+1得v(t)=s′=2at,故v(2)=12,所以2a·2=12,得a=3.【题目点拨】本题主要考察导数的物理意义.属于基础题6、B【解题分析】

由已知中的程序语句可知:该程序的功能是利用循环结构计算输入时变量x的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得到答案.【题目详解】本题由于已知输出时x的值,因此可以逆向求解:输出,此时;上一步:,此时;上一步:,此时;上一步:,此时;故选:B.【题目点拨】本题考查了程序框图的循环结构,考查了学生逻辑推理和数学运算的能力,属于基础题.7、B【解题分析】由题意,记“第一次抽到奇数”为事件A,记“第二次抽到偶数”为事件B,则,,所以.故选B.8、C【解题分析】试题分析:本题可以采用排除法求解,由题设条件,等式左右两边的同次项的系数一定相等,故可以比较两边的系数来排除一定不对的选项,由于立方项的系数与常数项相对较简单,宜先比较立方项的系数与常数项,由此入手,相对较简.解:比较等式两边x3的系数,得4=4+b1,则b1=1,故排除A,D;再比较等式两边的常数项,有1=1+b1+b2+b3+b4,∴b1+b2+b3+b4=1.故排除B故应选C考点:二项式定理点评:排除法做选择题是一种间接法,适合题目条件较多,或者正面证明、判断较困难的题型.9、B【解题分析】

圆心到直线的距离,根据点到直线的距离公式计算得到答案.【题目详解】根据题意:圆心到直线的距离,故,解得.故选:.【题目点拨】本题考查了根据弦长求参数,意在考查学生的计算能力和转化能力.10、B【解题分析】设椭圆的长半轴长为,双曲线的实半轴常为,故选B.11、D【解题分析】

根据正弦定理,将题中的数据代入,解之即可得到的大小.【题目详解】由正弦定理,得解之可得.故选:D.【题目点拨】本题主要考查解三角形中的正弦定理,已知两角和一边求另一边,通常用正弦定理求解.12、B【解题分析】

分别求出时左端的表达式,和时左端的表达式,比较可得“从到”左端需增乘的代数式.【题目详解】由题意知,当时,有,当时,等式的左边为,所以左边要增乘的代数式为.故选:.【题目点拨】本题主要考查的是归纳推理,需要结合数学归纳法进行求解,熟知数学归纳法的步骤,最关键的是从到,考查学生仔细观察的能力,是中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

设,则,然后根据定积分公式计算可得.【题目详解】设,则,所以===.故答案为:.【题目点拨】本题考查了定积分的计算,属基础题.14、真【解题分析】

按反证法证明.【题目详解】假设命题的结论不正确,,那么结论的否定且正确,若且,则这与已知矛盾,原命题是真命题,即“若,则或”为真命题.故答案为:真【题目点拨】本题考查判断命题的真假,意在考查推理与证明,属于基础题型.15、.【解题分析】

对函数求导得,把代入得,由点斜式方程得切线方程为.【题目详解】因为,所以,又切点为,所以在点处的切线方程为.【题目点拨】本题考查运用导数的几何意义,求曲线在某点处的切线方程.16、【解题分析】

从椭圆方程中得出、的值,可得出的值,可得出椭圆的焦点坐标.【题目详解】由题意可得,,,因此,椭圆的焦点坐标是,故答案为.【题目点拨】本题考查椭圆焦点坐标的求解,解题时要从椭圆的标准方程中得出、、的值,同时也要确定焦点的位置,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)证明见解析,.【解题分析】

(1)根据复数模的几何意义以及椭圆的定义可得出曲线为椭圆,并设曲线的方程为,求出、的值,可得出曲线的方程;(2)设点的坐标为,根据以及得出关于、的方程组,解出这两个未知数,即可得出点的坐标;(3)设直线的方程为,设点、,将直线的方程与曲线的方程联立,并列出韦达定理,求出点的坐标,并求出、、、的表达式,结合韦达定理可求出的值.【题目详解】(1)设复数,由可知,复平面内的动点到点、的距离之和为,且有,所以,曲线是以点、为左、右焦点的椭圆,设曲线的方程为,则,,.因此,曲线的方程为;(2)设点的坐标为,则,又点在曲线上,所以,解得,因此,点的坐标为;(3)设直线的方程为,点、,直线交轴于点,将直线的方程与曲线的方程联立得,消去,得,得由韦达定理得,.,,,,因此,.【题目点拨】本题考查椭圆的轨迹方程、椭圆上的点的坐标的求解以及直线与椭圆中线段长度比的问题,一般利用将直线方程与椭圆方程联立,利用韦达定理设而不求法求解,考查运算求解能力,属于中等题.18、(1)x2+y2-2x-2y-2=0(2)ρsin(θ+)=【解题分析】(1)∵ρ=2,∴ρ2=4,即x2+y2=4.∵ρ2-2ρcos(θ-)=2,∴ρ2-2ρ(cosθcos+sinθsin)=2.∴x2+y2-2x-2y-2=0.(2)将两圆的直角坐标方程相减,得经过两圆交点的直线方程为x+y=1.化为极坐标方程为ρcosθ+ρsinθ=1,即ρsin(θ+)=.19、(1)的极小值是,无极大值;(2)答案不唯一,具体见解析;(3).【解题分析】

代入a值,求函数的导数,解导数不等式得到函数的单调区间,即可求极值;求函数的导数,通过讨论a的范围,解导数不等式得函数的递增区间;问题转化为,令,根据函数的单调性求最大值,从而求a的范围.【题目详解】解:时,,,令,解得:或,令,解得:,故在递增,在递减,在递增,而在处无定义,故的极小值是,无极大值;,当时,解得:或,故函数在,递增,当时,解得:,故函数在递增;,,令,则,,令,解得:,在递增,在递减,即,故.【题目点拨】本题考查函数的单调性,最值问题,考查导数的应用以及函数恒成立问题,考查分类讨论思想,综合性较强.20、(1)见解析(2)【解题分析】

(1)先证平面CMD,得,再证,进而完成证明.(2)先建立空间直角坐标系,然后判断出的位置,求出平面和平面的法向量,进而求得平面与平面所成二面角的正弦值.【题目详解】解:(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为上异于C,D的点,且DC为直径,所以DM⊥CM.又BCCM=C,所以DM⊥平面BMC.而DM平面AMD,故平面AMD⊥平面BMC.(2)以D为坐标原点,的方向为x轴正方向,建立如图所示的空间直角坐标系D−xyz.当三棱锥M−ABC体积最大时,M为的中点.由题设得,设是平面MAB的法向量,则即可取.是平面MCD的法向量,因此,,所以面MAB与面MCD所成二面角的正弦值是.【题目点拨】本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问主要考查建立空间直角坐标系,利用空间向量求出二面角的平面角,考查数形结合,将几何问题转化为代数问题进行求解,考查学生的计算能力和空间想象能力,属于中档题.21、(1)在上单调递减,在区间上单调递增.(2)见解析(3)【解题分析】分析:(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)求出函数的导函数,根据函数的单调性,得到函数在的零点个数,求出方程在的解的个数即可;(3)设,,根据函数的单调性求出函数的最小值,,求出的范围即可.详解:(1)由已知.所以,在区间上,函数在上单调递减,在区间上,函数在区间上单调递增.(2)设,.,由(1)知,函数在区间上单调递增.且,.所以,在区间上只有一个零点,方程在区间上只有一个解.(3)设,,定义域为,,令,则,由(2)知,在区间上只有一个零点,是增函数,不妨设的零点为,则,所以,与在区间上的情况如下:-0+所以,函数的最小值为,,由,得,所以.依题意,即,解得,所以,的取值范围为.点睛:该题考查的是有关应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性,应用导数研究函数的零点,应用导数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论