




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省蚌埠四校2024届数学高二下期末综合测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.空间中不共面的4点A,B,C,D,若其中3点到平面的距离相等且为第四个点到平面的倍,这样的平面的个数为()A.8 B.16 C.32 D.482.设,若,则数列是()A.递增数列 B.递减数列C.奇数项递增,偶数项递减的数列 D.偶数项递增,奇数项递减的数列3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯A.1盏 B.3盏C.5盏 D.9盏4.设函数是定义在实数集上的奇函数,在区间上是增函数,且,则有()A. B.C. D.5.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100 B.150C.200 D.2506.已知定义在上的奇函数满足,且当时,,则()A.1 B.-1 C.2 D.-27.设,是两个不重合的平面,,是空间两条不重合的直线,下列命题不正确的是()A.若,,则 B.若,,则C.若,,则 D.若,,则8.某城市关系要好的,,,四个家庭各有两个小孩共人,分别乘甲、乙两辆汽车出去游玩,每车限坐名(乘同一辆车的名小孩不考虑位置),其中户家庭的孪生姐妹需乘同一辆车,则乘坐甲车的名小孩恰有名来自于同一个家庭的乘坐方式共有()A.种 B.种 C.种 D.种9.复数满足,且在复平面内对应的点在第四象限,则实数的取值范围是()A. B. C. D.10.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,每天的正点率服从正态分布,且,则()A.0.96 B.0.97 C.0.98 D.0.9911.已知集合,,现从这两个集合中各取出一个元素组成一个新的双元素组合,则可以组成这样的新集合的个数为()A. B. C. D.12.利用数学归纳法证明不等式的过程中,由变成时,左边增加了()A.1项 B.项 C.项 D.项二、填空题:本题共4小题,每小题5分,共20分。13.直线与圆相交的弦长为__________.14.向量与之间的夹角的大小为__________.15.已知向量与的夹角为,且,,则向量在向量方向上的投影为________.16.有编号分别为1,2,3,4,5的5个黑色小球和编号分别为1,2,3,4,5的5个白色小球,若选取的4个小球中既有1号球又有白色小球,则有______种不同的选法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)《福建省高考改革试点方案》规定:从2018年秋季高中入学的新生开始,不分文理科;2021年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成,将每门选考科目的考生原始成绩从高到低划分为A、B+、B、C+、C、D+、D、E共8个等级,参照正态分布原则,确定各等级人数所占比例分别为3%、7%、18%、22%、22%、18%、7%、3%,选考科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到[91,100]、[81,90]、[71.80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八个分数区间,得到考生的等级成绩,某校高一年级共2000人,为给高一学生合理选科提供依据,对六门选考科目进行测试,其中化学考试原始成绩基本服从正态分布.(1)求化学原始成绩在区间(57,96)的人数;(2)以各等级人数所占比例作为各分数区间发生的概率,按高考改革方案,若从全省考生中随机抽取3人,记表示这3人中等级成绩在区间[71,90]的人数,求事件的概率(附:若随机变量,,)18.(12分)已知函数(其中),.(Ⅰ)若命题“”是真命题,求的取值范围;(Ⅱ)设命题:;命题:.若是真命题,求的取值范围.19.(12分)在平面直角坐标系中,直线:,以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.设直线与曲线交于,两点.(1)当时,求,两点的直角坐标;(2)当变化时,求线段中点的轨迹的极坐标方程.20.(12分)已知函数.(Ⅰ)当时,求不等式的解集;(Ⅱ)若不等式的解集不是空集,求实数的取值范围.21.(12分)在如图所示的六面体中,面是边长为的正方形,面是直角梯形,,,.(Ⅰ)求证://平面;(Ⅱ)若二面角为,求直线和平面所成角的正弦值.22.(10分)已知函数,.(Ⅰ)当时,求的单调区间与极值;(Ⅱ)当时,若函数在上有唯一零点,求的值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
由题意分类讨论各种情况,然后利用加法原理确定满足题意的平面的个数即可.【题目详解】第一种情况,A,B,C,D点在平面的同侧.当平面∥平面BCD时,A与平面的距离是与平面BCD的距离的2倍.这种情况下有4个平面.第二种情况,A,B,C,D中有3个点在平面的一侧,第4个点在平面的另一侧,这时又有两种情形:一种情形是平面与平面BCD平行,且A与平面的距离是平面与平面BCD距离的2倍.这时有4个平面.另一种情形如图a所示,图中E,F分别是AB,AC的中点,K是AD的三等分点中靠近A的分点,A,B,C到平面EFK(即平面)的距离是D到平面EFK距离的一半.∵EF可以是AB,AC的中点的连线,又可以是AB,BC的中点的连线,或AC,BC的中点的连线,∴这种情形下的平面有3×4=12(个).第三种情况,如图b所示,在A,B,C,D四点中,平面两侧各种有两点.容易看出:点A到平面EFMN(平面)的距离是B,C,D到该平面距离的2倍.就A,C与B,D分别位于平面两侧的情形来看,就有A离平面远,B离平面远,C离平面远,D离平面远这四种情况.又“AC,BD异面,则这样的异面直线共有3对,∴平面有4×3=12(个).综上分析,平面有4+4+12+12=32(个).故选C.【题目点拨】本题主要考查分类讨论的数学思想,计数原理的应用,空间几何体的结构特征等知识,意在考查学生的转化能力和计算求解能力.2、C【解题分析】
根据题意,由三角函数的性质分析可得,进而可得函数为减函数,结合函数与数列的关系分析可得答案。【题目详解】根据题意,,则,指数函数为减函数即即即即,数列是奇数项递增,偶数项递减的数列,故选:C.【题目点拨】本题涉及数列的函数特性,利用函数单调性,通过函数的大小,反推变量的大小,是一道中档题目。3、B【解题分析】
设塔顶的a1盏灯,由题意{an}是公比为2的等比数列,∴S7==181,解得a1=1.故选B.4、A【解题分析】
由题意可得,,再利用函数在区间上是增函数可得答案.【题目详解】解:为奇函数,,又,,又,且函数在区间上是增函数,,,故选A.【题目点拨】本题考查利用函数的单调性、奇偶性比较函数值的大小,考查利用知识解决问题的能力.5、A【解题分析】试题分析:根据已知可得:,故选择A考点:分层抽样6、B【解题分析】
根据f(x)是R上的奇函数,并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期为4,而由x∈[0,1]时,f(x)=2x-m及f(x)是奇函数,即可得出f(0)=1-m=0,从而求得m=1,这样便可得出f(2019)=f(-1)=-f(1)=-1.【题目详解】∵是定义在R上的奇函数,且;∴;∴;∴的周期为4;∵时,;∴由奇函数性质可得;∴;∴时,;∴.故选:B.【题目点拨】本题考查利用函数的奇偶性和周期性求值,此类问题一般根据条件先推导出周期,利用函数的周期变换来求解,考查理解能力和计算能力,属于中等题.7、D【解题分析】
选项逐一分析,得到正确答案.【题目详解】A.正确,垂直于同一条直线的两个平面平行;B.正确,垂直于同一个平面的两条直线平行;C.正确,因为平面内存在直线,使,若,则,则;D.不正确,有可能.故选D.【题目点拨】本题重点考查了平行和垂直的概念辨析问题,属于简单题型.8、B【解题分析】若A户家庭的李生姐妹乘坐甲车,即剩下的两个小孩来自其他的2个家庭,有种方法.若A户家庭的李生姐妹乘坐乙车,那来自同一家庭的2名小孩来自剩下的3个家庭中的一个,有.所以共有12+12=24种方法.本题选择B选项.点睛:(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.9、C【解题分析】
首先化简,通过所对点在第四象限建立不等式组,得到答案.【题目详解】根据题意得,,因为复平面内对应的点在第四象限,所以,解得,故选C.【题目点拨】本题主要考查复数的四则运算,复数的几何意义,难度不大.10、D【解题分析】
根据正态分布的对称性,求得指定区间的概率.【题目详解】由于,故,故选D.【题目点拨】本小题主要考查正态分布的对称性,考查正态分布指定区间的概率的求法,属于基础题.11、C【解题分析】
利用分类计数加法原理和分步计数乘法原理计算即可,注意这个特殊元素的处理.【题目详解】已知集合,,现从这两个集合中各取出一个元素组成一个新的双元素组合,分为2类:含5,不含5;则可以组成这样的新集合的个数为个.故选C.12、D【解题分析】
分别写出、时,不等式左边的式子,从而可得结果.【题目详解】当时,不等式左边为,当时,不等式左边为,则增加了项,故选D.【题目点拨】项数的变化规律,是利用数学归纳法解答问题的基础,也是易错点,要使问题顺利得到解决,关键是注意两点:一是首尾两项的变化规律;二是相邻两项之间的变化规律.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
将极坐标方程化为直角坐标系方程是常用方法.【题目详解】将直线化为普通方程为:,∵,∴,化为普通方程为:,即,联立得,解得,∴直线与圆相交的弦长为,故答案为.考点:简单曲线的极坐标方程.14、120°【解题分析】
首先求得向量的数量积和向量的模,然后利用夹角公式即可求得向量的夹角.【题目详解】由题意可得:,,,则.故答案为:120°.【题目点拨】本题主要考查空间向量夹角的计算,空间向量数量积和向量的模的计算等知识,意在考查学生的转化能力和计算求解能力.15、【解题分析】
由题知,,再根据投影的概念代入计算即可.【题目详解】,,所以向量在向量方向上的投影为.故答案为:【题目点拨】本题主要考查了向量模的坐标计算,投影的概念与计算.16、136【解题分析】分析:分两种情况:取出的4个小球中有1个是1号白色小球;取出的4个小球中没有1号白色小球.详解:由题,黑色小球和白色小球共10个,分两种情况:取出的4个小球中有1个是1号白色小球的选法有种;取出的4个小球中没有1号白色小球,则必有1号黑色小球,则满足题意的选法有种,则满足题意的选法共有种.即答案为136.点睛:本题考查分步计数原理、分类计数原理的应用,注意要求取出的“4个小球中既有1号球又有白色小球”.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1636人(2)【解题分析】
(1),结合正态分布的性质,可求出概率,然后由总人数为2000,可求出化学原始成绩在的人数;(2)结合独立重复试验概率公式可求出概率.【题目详解】解:(1)因为化学原始成绩,所以.所以化学原始成绩在的人数为(人).(2)因为以各等级人数所占比例作为各分数区间发生的概率,且等级成绩在区间、的人数所占比例分别为、,则随机抽取1人,其等级成绩在区间内的概率为.所以从全省考生中随机抽取3人,则的所有可能取值为0,1,2,3,且,所以.【题目点拨】本题考查了正态分布曲线的特点,考查了独立重复试验概率公式,考查了计算能力,属于中档题.18、(Ⅰ);(Ⅱ)【解题分析】试题分析:(1),即,,解得;(2)是真命题,则都是真命题.当时,,故需.或,故,.当时,,故需.,所以,.综上所述,.试题解析:(1)∵命题“”是真命题,即,∴,解得,∴的取值范围是;(2)∵是真命题,∴与都是真命题,当时,,又是真命题,则∵,∴,∴或∴,解得当时,∵是真命题,则,使得,而∵,∴,∴,解得求集合的交集可得.考点:命题真假性判断,含有逻辑联结词的命题.19、(1);(2).【解题分析】
(1)根据,将曲线的极坐标方程化为直角坐标方程,与直线方程联立,即可求解(2)设,根据已知可得在曲线上,即可求解.【题目详解】(1)由得,,联立,消去得,,解得,或,当时,,当时,,,两点的直角坐标分别为;(2)直线与曲线有一交点为极点,不妨为,设,则在曲线上,所以,即,因为不重合,所以所以线段中点的轨迹的极坐标方程【题目点拨】本题考查直线与圆的位置关系、轨迹方程,意在考查逻辑推理、数学计算能力,属于基础题.20、(Ⅰ);(Ⅱ)【解题分析】
(Ⅰ)分别在、和三种情况下讨论,去掉绝对值求得结果;(Ⅱ)由解集不是空集可知:且;利用绝对值三角不等式求得,解不等式求得结果.【题目详解】(Ⅰ)当时,不等式为当时,,解得:;当时,,显然不等式不成立;当时,则,解得:综上可得,不等式的解集为:或(Ⅱ)不等式的解集不是空集,则,且,即又,解得:实数的取值范围是【题目点拨】本题考查绝对值不等式的解法、绝对值三角不等式求最值、恒成立思想的应用等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物理法则的现代应用试题及答案
- 社交电商裂变营销:从内容营销到社群运营的全面解析
- 维保考试题及答案
- 科技互联网行业人工智能算法优化与性能提升策略研究报告
- 2025年智能仓储物流系统智能化改造成果鉴定报告
- 小学教师教学反思改进试题及答案
- 新能源汽车安全技术考试试题及答案
- 数学一诊试题及答案
- 监理员合同试题及答案
- 灵活力测试题及答案
- 2024-2025学年高一下学期期中考试化学试卷
- 四川省南充市高级中学2024-2025学年高二下学期期中考试 化学(含答案)
- 国际教育规划合同8篇
- 整装定制合同协议
- 产品研发项目管理制度
- 2025年全国中学生汉字听写大会比赛题库及解析(共八套)
- 关于临期商品的处理管理办法
- 新能源全面入市是构建新型电力系统的重要支撑-136号文政策解读
- 2025消防业务理论考试题库及参考答案
- 机关财务报销制度和流程
- DB12-T1196-2023公路养护工程质量检验评定标准
评论
0/150
提交评论