




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖南省、江西省等十四校高二数学第二学期期末预测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设a=log20.3,b=10lg0.3,c=100.3,则A.a<b<c B.b<c<a C.c<a<b D.c<b<a2.,若,则的值等于()A.B.C.D.3.对于函数,“的图象关于轴对称”是“=是奇函数”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要4.函数,,若,,则的取值范围为()A. B. C. D.5.如图,棱长为1的正方体中,P为线段上的动点(不含端点),则下列结论错误的是A.平面平面B.的取值范围是(0,]C.的体积为定值D.6.设为虚数单位,复数为纯虚数,则().A.2 B.-2 C. D.7.已知复数满足(为虚数单位),则复数的虚部等于()A.1 B.-1 C.2 D.-28.已知函数的图象关于点对称,则在上的值域为()A. B. C. D.9.下面是利用数学归纳法证明不等式(,且的部分过程:“……,假设当时,++…+,故当时,有,因为,故++…+,……”,则横线处应该填()A.++…++<,B.++…+,C.2++…++,D.2++…+,10.在的展开式中,项的系数为()A. B.40 C. D.8011.下列随机试验的结果,不能用离散型随机变量表示的是()A.将一枚均匀正方体骰子掷两次,所得点数之和B.某篮球运动员6次罚球中投进的球数C.电视机的使用寿命D.从含有3件次品的50件产品中,任取2件,其中抽到次品的件数12.已知复平面内的圆:,若为纯虚数,则与复数对应的点()A.必在圆外 B.必在上 C.必在圆内 D.不能确定二、填空题:本题共4小题,每小题5分,共20分。13.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于().14.如图,两条距离为4的直线都与轴平行,它们与抛物线和圆分别交于,和,,且抛物线的准线与圆相切,则的最大值为______.15.关于的不等式恒成立,则的取值范围为________16.若函数的反函数为,且,则的值为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(I)若,求曲线在点处的切线方程;(Ⅱ)若函数在上是减函数,即在上恒成立,求实数的取值范围.18.(12分)央视传媒为了解央视举办的“朗读者”节目的收视时间情况,随机抽取了某市名观众进行调查,其中有名男观众和名女观众,将这名观众收视时间编成如图所示的茎叶图(单位:分钟),收视时间在分钟以上(包括分钟)的称为“朗读爱好者”,收视时间在分钟以下(不包括分钟)的称为“非朗读爱好者”.(1)若采用分层抽样的方法从“朗读爱好者”和“非朗读爱好者”中随机抽取名,再从这名观众中任选名,求至少选到名“朗读爱好者”的概率;(2)若从收视时间在40分钟以上(包括40分钟)的所有观众中选出男、女观众各1名,求选出的这两名观众时间相差5分钟以上的概率.19.(12分)在二项式的展开式中.(1)若展开式后三项的二项式系数的和等于67,求展开式中二项式系数最大的项;(2)若为满足的整数,且展开式中有常数项,试求的值和常数项.20.(12分)已知函数(,e为自然对数的底数).(1)若,求的最大值;(2)若在R上单调递减,①求a的取值范围;②当时,证明:.21.(12分)在直角坐标系中,斜率为k的动直线l过点,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)若直线l与曲线C有两个交点,求这两个交点的中点P的轨迹关于参数k的参数方程;(2)在条件(1)下,求曲线的长度.22.(10分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为(单位:元),当六月份这种酸奶一天的进货量(单位:瓶)为多少时,的数学期望达到最大值?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
求出三个数值的范围,即可比较大小.【题目详解】,,,,,的大小关系是:.故选:A.【题目点拨】对数函数值大小的比较一般有三种方法:①单调性法,在同底的情况下直接得到大小关系,若不同底,先化为同底.②中间值过渡法,即寻找中间数联系要比较的两个数,一般是用“0”,“1”或其他特殊值进行“比较传递”.③图象法,根据图象观察得出大小关系.2、D【解题分析】试题分析:考点:函数求导数3、B【解题分析】
由奇函数,偶函数的定义,容易得选项B正确.4、C【解题分析】分析:利用均值定理可得≥2,中的,即≤2,所以a≤0详解:由均值不等式得≥2,当且仅当x=0取得≤2,,当a≤0时,≥2,≤2故本题选C点晴:本题是一道恒成立问题,恒成立问题即最值问题,本题结合均值,三角函数有界性等综合出题,也可以尝试特殊值方法进行解答5、B【解题分析】
根据线面位置关系进行判断.【题目详解】∵平面,∴平面平面,A正确;若是上靠近的一个四等分点,可证此时为钝角,B错;由于,则平面,因此的底面是确定的,高也是定值,其体积为定值,C正确;在平面上的射影是直线,而,因此,D正确.故选B.【题目点拨】本题考查空间线面间的位置关系,考查面面垂直、线面平行的判定,考查三垂线定理等,所用知识较多,属于中档题.6、D【解题分析】
整理得:,由复数为纯虚数列方程即可得解.【题目详解】因为又它是纯虚数,所以,解得:故选D【题目点拨】本题主要考查了复数的除法运算,还考查了复数的相关概念,考查方程思想,属于基础题.7、A【解题分析】由题设可得,则复数的虚部等于,应选答案A。8、D【解题分析】由题意得,函数的图象关于点对称,则,即,解得,所以,则,令,解得或,当,则,函数单调递减,当,则,函数单调递增,所以,,所以函数的值域为,故选D.点睛:本题考查了函数的基本性质的应用,其中解答中涉及到利用导数研究函数的单调性,利用导数研究函数的最值,其中解答中根据函数的图象关于点对称,列出方程组,求的得值是解得关键,着重考查了学生分析问题和解答问题的能力.9、A【解题分析】
由归纳假设,推得的结论,结合放缩法,便可以得出结论.【题目详解】假设当时,++…+,故当时,++…++<,因为,++…+,故选A.【题目点拨】本题主要考查数学归纳法的步骤,以及放缩法的运用,意在考查学生的逻辑推理能力.10、D【解题分析】
通过展开二项式即得答案.【题目详解】在的展开式中,的系数为,故答案为D.【题目点拨】本题主要考查二项式定理,难度很小.11、C【解题分析】分析:直接利用离散型随机变量的定义逐一判断即可.详解:随机取值的变量就是随机变量,随机变量分为离散型随机变量与连续型随机变量两种,随机变量的函数仍为随机变量,有些随机变量,它全部可能取到的不相同的值是有限个或可列无限多个,这种随机变量称为“离散型随机变量”,题目中都属于离散型随机变量,而电视机的使用寿命属于连续型随机变量,故选C.点睛:随机取值的变量就是随机变量,随机变量分为离散型随机变量与连续型随机变量两种(变量分为定性和定量两类,其中定性变量又分为分类变量和有序变量;定量变量分为离散型和连续型),随机变量的函数仍为随机变量,本题考的离散型随机变量.12、A【解题分析】
设复数,再利用为纯虚数求出对应的点的轨迹方程,再与圆:比较即可.【题目详解】由题,复平面内圆:对应的圆是以为圆心,1为半径的圆.若为纯虚数,则设,则因为为纯虚数,可设,.故故,因为,故.当有.当时,两式相除有,化简得.故复数对应的点的轨迹是.则所有的点都在为圆心,1为半径的圆外.故选:A【题目点拨】本题主要考查复数的轨迹问题,根据复数在复平面内的对应的点的关系求解轨迹方程即可.属于中等题型.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】试题分析:根据题意,记该选手恰好回答了4个问题就晋级下一轮为A,若该选手恰好回答了4个问题就晋级下一轮,必有第二个问题回答错误,第三、四个回答正确,第一个问题可对可错;有相互独立事件的概率乘法公式,可得P(A)=1×0.2×0.8×0.8=0.128,故答案为0.128.法二:根据题意,记该选手恰好回答了4个问题就晋级下一轮为A,若该选手恰好回答了4个问题就晋级下一轮,必有第二个问题回答错误,第三、四个回答正确,第一个问题可对可错,由此分两类,第一个答错与第一个答对;有相互独立事件的概率乘法公式,可得P(A)=0.8×0.2×0.8×0.8+0.2×0.2×0.8×0.8=0.2×0.8×0.8=0.128考点:相互独立事件的概率乘法公式14、【解题分析】
先设直线的方程为,再利用直线与圆锥曲线的位置关系将用表示,再利用导数求函数的最值即可得解.【题目详解】解:由抛物线的准线与圆相切得或7,又,∴.设直线的方程为,则直线的方程为,则.设,,令,得;令,得.即函数在为增函数,在为减函数,故,从而的最大值为,故答案为:.【题目点拨】本题考查了利用导数求函数的最值,重点考查了运算能力,属中档题.15、【解题分析】
由题意得,由绝对值三角不等式求出函数的最小值,从而可求出实数的取值范围.【题目详解】由题意得,由绝对值三角不等式得,,因此,实数的取值范围是,故答案为:.【题目点拨】本题考查不等式恒成立问题,同时也考查了利用绝对值三角不等式求最值,解题时要结合题中条件转化为函数的最值来求解,考查化归与转化数学思想,属于中等题.16、【解题分析】
根据反函数的解析式,求得函数的解析式,代入即可求得的值.【题目详解】因为函数的反函数为,且令则所以即函数()所以故答案为:【题目点拨】本题考查了反函数的求法,求函数值,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解题分析】
(1)求出函数的导数,计算f(1),f′(1)的值,写出切线方程即可(2)求出函数的导数,根据函数的单调性求出a的范围即可.【题目详解】(1)当时,,所以,
所以,又,
所以曲线在点处的切线方程为;
(2)因为函数f(x)在[1,3]上是减函数,
所以在[1,3]上恒成立,令,则,解得,故.所以实数的取值范围.【题目点拨】本题主要考查了函数的单调性,函数的最值,导数的应用,恒成立问题,属于中档题.18、(1)(2)【解题分析】试题分析:试题解析:(1)根据茎叶图,有“朗读爱好者”人,“非朗读爱好者”人,用分层抽样的方法,每个人被抽到的概率是选中的“朗读爱好者”有人,记为,“非朗读爱好者”有人,记为;记:至少有一名是“朗读爱好者”被选中,基本事件有,,,,,,,,,共个;满足事件的有,,,,,,共个,则(2)收视时间在分钟以上的男观众分别是,,,,,女观众分别是,现要各抽一名,则有,,,,,,,,,共种情况.收视时间相差分钟以上的有,,,,共种情况.故收视时间相差分钟以上的概率.19、(1)展开式中二项式系数最大的项为第6和第7项,,(2),常数项为【解题分析】
(1)根据条件求出的值,然后判断第几项二项式系数最大,并求之;(2)常数项其实说明的指数为,根据这一特点,利用项数与第几项的关系求解出的值.【题目详解】解:(1)由已知整理得,显然则展开式中二项式系数最大的项为第6和第7项(2)设第项为常数项,为整数,则有,所以,或当时,;时,(不合题意舍去),所以常数项为【题目点拨】对于形如的展开式,展开后一共有项,若为奇数,则二项式系数最大的项有项,分别为项,为若为偶数,则二项式系数最大的项有项,即为项(也可借助杨辉三角的图分析).20、(1)1;(2)①,②证明见解析.【解题分析】
(1)求出函数的导函数,利用导函数与函数单调性的关系当,求出单调递增区间,当,求出函数的单调递减区间,进而可求出最大值.(2)①求出对恒成立,化为对恒成立,记,讨论值,求出的最小值即可证出;②由题意可得,即,两边取对数可得,下面采用分析法即可证出.【题目详解】(1)时,时,,在上单调递增时,,在上单调递减(2)由①在R上单调递减,对恒成立,即对恒成立,记,则对恒成立,当时,,符题当时,时,,在上单调递减时,,在上单调递增;当时,时,,在上单调递减时,,在上单调递增;综上:②当时,在上单调递减,,,,.要证,即证下面证明令,,则,在区间上单调递增,,得证【题目点拨】本题考查了导函数在研究函数单调性的应用,分析法证明不等式,考查了分类讨论的思想,综合性比较强,属于难题.21、(1);(2)【解题分析】
(1)把两边同时乘以,然后结合极坐标与直角坐标的互化公式可得曲线的直角坐标方程,设直线的方程为,与曲线联立,利用根与系数的关系可得两个交点的中点的轨迹关于参数的参数方程;(2)化参数方程为普通方程,作出图形,数形结合即可求得曲线的长度.【题目详解】解:(1)曲线C的直角坐标方程为.设直线l的方程为,设直线l与曲线C的交点为,,联立直线l与曲线C的方程得解得,,,,设P的坐标为,则,代入l的方程得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学家长会校长发言
- 2024广告设计师能力要求分析试题及答案
- 2024年纺织工程师生产线优化试题及答案
- 国际商业美术设计师考试实际案例研究试题及答案
- 水泥实验考试题及答案
- 河南物理期中试题及答案
- hr证书考试题库及答案
- 下料工考试试题及答案
- 光伏站区动力电缆技术规范书
- 文字类考试题及答案
- 《地方文化资源在幼儿园中开发利用的比较研究》
- 【MOOC】制造技术基础训练-北京理工大学 中国大学慕课MOOC答案
- 零售基础 课件 第三章 零售用户思维
- 部编版历史八年级下册第四单元 第13课《香港和澳门回归祖国》说课稿
- 中班数学活动建造公园
- 2025年中考英语总复习:书面表达 刷题练习题汇编(含答案解析、范文)
- 警察小学生安全教育讲座
- 分期还款协议书模板示例
- 幼升小公有住宅租赁合同(2篇)
- 彩票大数据预测分析
- 4.1基因指导蛋白质的合成(第1课时)高一下学期生物人教版必修2
评论
0/150
提交评论