




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省南京市、盐城市数学高二下期末统考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.元朝著名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,即最终输出的,则一开始输入的x的值为()A. B. C. D.2.在中,为边上一点,且,向量与向量共线,若,,,则()A.3 B. C.2 D.3.已知函数,当时,不等式恒成立,则实数的取值范围为()A. B. C. D.4.设F为双曲线C:(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P、Q两点.若|PQ|=|OF|,则C的离心率为A. B.C.2 D.5.的展开式中有理项系数之和为()A. B. C. D.6.的值为()A.0 B.2 C.-1 D.17.已知是虚数单位,则在复平面内对应的点位于A.第一象限 B.第二象限 C.第三象限 D.第四象限8.如果根据是否爱吃零食与性别的列联表得到,所以判断是否爱吃零食与性别有关,那么这种判断犯错的可能性不超过()注:0.1000.0500.0250.0100.001k2.7063.8415.0246.63510.828A.2.5% B.0.5% C.1% D.0.1%9.若函数有三个零点,则实数的取值范围为()A. B. C. D.10.等比数列的各项均为正数,且,则()A.12 B.10C.9 D.11.展开式中的所有项系数和是()A.0 B.1 C.256 D.51212.随机抛掷一枚骰子,则所得骰子点数的期望为()A.0.6 B.1 C.3.5 D.2二、填空题:本题共4小题,每小题5分,共20分。13.若向量与平行.则__.14.一个长方体共一项点的三个面的面积分别是,这个长方体对角线的长是____________.15.若对一切恒成立,则a的取值范围为________.16.同宿舍的6个同学站成一排照相,其中甲只能站两端,乙和丙必须相邻,一共有_____种不同排法(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆M的方程是,直线与椭圆M交于A、B两点,且椭圆M上存在点满足,求的值.18.(12分)已知函数当时,讨论的导函数在区间上零点的个数;当时,函数的图象恒在图象上方,求正整数的最大值.19.(12分)如图,在多面体中,四边形为等腰梯形,,已知,,,四边形为直角梯形,,.(1)证明:平面平面;(2)求直线与平面所成角的正弦值.20.(12分)设分别为椭圆的左、右焦点,点为椭圆的左顶点,点为椭圆的上顶点,且.(1)若椭圆的离心率为,求椭圆的方程;(2)设为椭圆上一点,且在第一象限内,直线与轴相交于点,若以为直径的圆经过点,证明:点在直线上.21.(12分)已知函数.(1)若不等式无解,求实数的取值范围;(2)当时,函数的最小值为,求实数的值.22.(10分)已知函数,其中为实数.(1)求函数的单调区间;(2)若函数有两个极值点,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
由已知中的程序语句可知:该程序的功能是利用循环结构计算输入时变量x的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得到答案.【题目详解】本题由于已知输出时x的值,因此可以逆向求解:输出,此时;上一步:,此时;上一步:,此时;上一步:,此时;故选:B.【题目点拨】本题考查了程序框图的循环结构,考查了学生逻辑推理和数学运算的能力,属于基础题.2、B【解题分析】取BC的中点E,则与向量共线,所以A、D、E三点共线,即中边上的中线与高线重合,则.因为,所以G为的重心,则所以本题选择B选项.3、A【解题分析】
令,由可知在上单调递增,从而可得在上恒成立;通过分离变量可得,令,利用导数可求得,从而可得,解不等式求得结果.【题目详解】由且得:令,可知在上单调递增在上恒成立,即:令,则时,,单调递减;时,,单调递增,解得:本题正确选项:【题目点拨】本题考查根据函数的单调性求解参数范围的问题,关键是能够将已知关系式变形为符合单调性的形式,从而通过构造函数将问题转化为导数大于等于零恒成立的问题;解决恒成立问题常用的方法为分离变量,将问题转化为参数与函数最值之间的大小关系比较的问题,属于常考题型.4、A【解题分析】
准确画图,由图形对称性得出P点坐标,代入圆的方程得到c与a关系,可求双曲线的离心率.【题目详解】设与轴交于点,由对称性可知轴,又,为以为直径的圆的半径,为圆心.,又点在圆上,,即.,故选A.【题目点拨】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾,运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.5、B【解题分析】分析:在二项展开式的通项公式中,令x的幂指数为整数,求出r的值,再利用二项式系数的性质,即可求得展开式中有理项系数之和.详解:(1+)6的展开式的通项公式为Tr+1=•,令为整数,可得r=0,2,4,6,故展开式中有理项系数之和为+++=25=32,故选:B.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r+1项,再由特定项的特点求出r值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r+1项,由特定项得出r值,最后求出其参数6、D【解题分析】分析:求二项展开式系数和一般方法为赋值法,即分别令x=1与x=-1得,最后相乘得结果.详解:令,则,令,则,因此,选D.点睛:“赋值法”普遍适用于恒等式,是一种重要的方法,对形如的式子求其展开式的各项系数之和,常用赋值法,只需令即可;对形如的式子求其展开式各项系数之和,只需令即可.7、A【解题分析】
分子分母同时乘以,化简整理,得出,再判断象限.【题目详解】,在复平面内对应的点为(),所以位于第一象限.故选A.【题目点拨】本题考查复数的基本运算及复数的几何意义,属于基础题.8、A【解题分析】
根据得到,得到答案.【题目详解】,故,故判断“是否爱吃零食与性别有关”出错的可能性不超过2.5%.故选:.【题目点拨】本题考查了独立性检验问题,意在考查学生的理解能力和应用能力.9、A【解题分析】
令分离常数,构造函数,利用导数研究的单调性和极值,结合与有三个交点,求得的取值范围.【题目详解】方程可化为,令,有,令可知函数的增区间为,减区间为、,则,,当时,,则若函数有3个零点,实数的取值范围为.故选A.【题目点拨】本小题主要考查利用导数研究函数的零点,考查利用导数研究函数的单调性、极值,考查化归与转化的数学思想方法,属于中档题.10、C【解题分析】
先利用等比中项的性质计算出的值,再利用对数的运算性质以及等比中项的性质得出结果.【题目详解】由等比中项的性质可得,等比数列的各项均为正数,则,由对数的运算性质得,故选C.【题目点拨】本题考查等比中项和对数运算性质的应用,解题时充分利用这些运算性质,可简化计算,考查计算能力,属于中等题.11、B【解题分析】
令,可求出展开式中的所有项系数和.【题目详解】令,则,即展开式中的所有项系数和是1,故选B.【题目点拨】本题考查了二项式定理的应用,考查了展开式的系数和的求法,属于基础题.12、C【解题分析】
写出分布列,然后利用期望公式求解即可.【题目详解】抛掷骰子所得点数的分布列为123456所以.故选:.【题目点拨】本题考查离散型随机变量的分布列以及期望的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
由题意利用两个向量共线的性质,两个向量坐标形式的运算法则,求得的值.【题目详解】由题意,向量与平行,所以,解得.故答案为.【题目点拨】本题主要考查了两个向量共线的性质,两个向量坐标形式的运算,着重考查了推理与计算能力,属于基础题.14、【解题分析】
由长方体对角线与棱长的关系计算.【题目详解】设长方体的长、宽、高分别为,则,解得,∴对角线长.故答案为.【题目点拨】本题考查求长方体的对角线长,设长方体棱长分别为,则对角线长.15、【解题分析】
由题意可得恒成立,设,求得导数和单调性、极值和最值,即有a小于最小值.【题目详解】对一切恒成立,可得恒成立,设,则,,当时,,递增;时,,递减,可得处取得极小值,且为最小值4,可得.故答案为:.【题目点拨】本题考查不等式恒成立问题的解法,注意运用参数分离和导数的运用,考查运算能力,属于中档题.16、【解题分析】
设甲乙丙之外的三人为A、B、C,将乙和丙看作一个整体,与A、B、C三人全排列,然后排甲,甲只能在两端,有2种站法,利用分步乘法计数原理可求出答案.【题目详解】设甲乙丙之外的三人为A、B、C,将乙和丙看作一个整体,与A、B、C三人全排列,有种,甲只能在两端,甲有2种站法,则共有种排法.【题目点拨】本题考查了排列组合,考查了相邻问题“捆绑法”的运用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解题分析】
设出点A,B的坐标,联立准线方程与椭圆方程,结合韦达定理和平面向量的坐标运算法则可得关于实数m的方程,解方程即可确定m的值.【题目详解】设,联立,得,,解得,,,在椭圆上,,解得.【题目点拨】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.18、(1)当时,在存在唯一零点;当时,在没有零点(2)【解题分析】
(1)首先求,令,然后求,讨论当时,,判断函数的单调性和端点值,判断函数是否有零点;当时,同样是判断函数的单调性,然后结合零点存在性定理,可判断函数是否存在零点;(2)由,参变分离求解出在上恒成立,转化为求函数的最小值,设,,利用导数判断函数的单调性,求得函数的最小值.【题目详解】解:(1).令,,则,①当时,当,,单调递减,又,所以对时,,此时在不存在零点.②当时,当,,单调递减.又因为,取,则,即.根据零点存在定理,此时在存在唯一零点.综上,当时,在存在唯一零点;当时,在没有零点.(2)由已知得在上恒成立.设,,则因为时,所以,设,,所以在上单调递增,又,,由零点存在定理,使得,即,,且当时,,,单调递减;当时,,,单调递增.所以,又在上单调递减,而,所以,因此,正整数的最大值为.【题目点拨】本题第一问考查了判断函数零点个数的问题,这类问题需判断函数的单调性,再结合函数零点存在性定理判断,已知函数是单调函数的前提下,需满足,才可以说明区间内存在唯一零点,但难点是有时候或不易求得,本题中,证明的过程中,用到了,以及只有时,才有,这种赋端点值是比较难的.19、(1)见解析(2)【解题分析】分析:(1)通过取AD中点M,连接CM,利用,得到直角;再利用可得;而,DE平面ADEF,所以可得面面垂直.(2)以AD中点O建立空间直角坐标系,写出各点坐标,求得平面CAE与直线BE向量,根据直线与法向量的夹角即可求得直线与平面夹角的正弦值.详解:(1)证明:取的中点,连接,,,由四边形为平行四边形,可知,在中,有,∴.又,,∴平面,∵平面,∴.又,,∴平面.∵平面,∴平面平面.(2)解:由(1)知平面平面,如图,取的中点为,建立空间直角坐标系,,,,,,,.设平面的法向量,则,即,不妨令,得.故直线与平面所成角的正弦值.点睛:本题考查了空间几何体面面垂直的综合应用,利用法向量法求线面夹角的正弦值,关键注意计算要准确,属于中档题.20、(1);(2)见解析【解题分析】
(1)设,由,得,且,得,,,∴椭圆的方程为;(2)由题意,得,∴椭圆的方程,则,,,设,由题意知,则直线的斜率,直线的方程为,当时,,即点,直线的斜率为,∵以为直径的圆经过点,∴,∴,化简得,又∵为椭圆上一点,且在第一象限内,∴,,,由①②,解得,,∴,即点在直线上.21、(1);(2).【解题分析】分析:⑴化简不等式得,利用不等式性质转化为时满足题意,求出实数的取值范围⑵由代入化简不等式得不等式组,结合单调性求出最小值详解:(Ⅰ)∵,∵,当时取等号,∴要使不等式无解,只需,解得或,则实数的取值范围为:.(Ⅱ)因为,所以,∴在上是减函数,在上是增函数,所以,解得适合.点睛:本题考查了含有绝对值不等式的解答,运用不等式的性质进行化简,求出最值,当参数确定范围时,代入进行化简得到函数的表达式,根据单调性求出结果.22、(1)见解析;(2)证明见解析【解题分析】
(1)计算导数,采用分类讨论的方法,,与,根据导数的符号判定原函数的单调性,可得结果.(2)根据(1)的结论,可得,然后构造新函数,通过导数研究新函数的单调性,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版九年级数学上册《21.3 实际问题与一元二次方程》同步测试题及答案
- 2025届西藏拉萨市北京实验中学七年级数学第二学期期末综合测试试题含解析
- 2025届泰安市重点中学七下数学期末达标检测模拟试题含解析
- 客户关系维护与拓展计划
- 财务共享服务中心的建设与运作计划
- 大型演出的安保方案实施计划
- 浙江省杭州西湖区杭州市公益中学2025年八年级数学第二学期期末检测试题含解析
- 软件设计师考试复习资料试题及答案
- 企业战略目标与风险承受能力评估试题及答案
- 开拓新思维的工作计划
- 2025年中国消防救援学院第二批面向应届毕业生招聘28人历年管理单位笔试遴选500模拟题附带答案详解
- T-CIRA 46-2023 核电厂液态流出物中锶89和锶90分析 液体闪烁法
- 介入手术室感染控制管理
- 1学会尊重-尊重自己(说课稿 )-2023-2024学年道德与法治六年级下册统编版
- 会计案例分析-终结性考核-国开(SC)-参考资料
- 中国近代史纲要北京航空航天大学练习题复习资料
- 胸痹中医护理业务查房
- 装饰材料供应合同模板
- GB/T 44748.1-2024筛分试验第1部分:使用金属丝编织网和金属穿孔板试验筛的方法
- 2020-2021学年人教部编版八年级道德与法治下册 第一课 维护宪法权威 练习题
- 墙上高空作业施工方案
评论
0/150
提交评论