陕西省西安市西安中学2024届数学高二第二学期期末教学质量检测模拟试题含解析_第1页
陕西省西安市西安中学2024届数学高二第二学期期末教学质量检测模拟试题含解析_第2页
陕西省西安市西安中学2024届数学高二第二学期期末教学质量检测模拟试题含解析_第3页
陕西省西安市西安中学2024届数学高二第二学期期末教学质量检测模拟试题含解析_第4页
陕西省西安市西安中学2024届数学高二第二学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省西安市西安中学2024届数学高二第二学期期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线的焦点坐标为A.(0,2) B.(2,0) C.(0,4) D.(4,0)2.甲、乙、丙,丁四位同学一起去问老师询问成语竞赛的成绩。老师说:你们四人中有两位优秀,两位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩,根据以上信息,则()A.乙、丁可以知道自己的成绩 B.乙可以知道四人的成绩C.乙、丁可以知道对方的成绩 D.丁可以知道四人的成绩3.已知随机变量服从的分布列为123…nP…则的值为()A.1 B.2 C. D.34.如图所示,阴影部分的面积为()A. B.1 C. D.5.我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架歼-15飞机准备着舰.如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同的着舰方法有()A.12种 B.18种 C.24种 D.48种6.已知双曲线的一个焦点坐标为,且双曲线的两条渐近线互相垂直,则该双曲线的方程为()A. B. C. D.或7.若,则()A.2 B.4 C. D.88.设有一个回归方程为y=2-2.5x,则变量x增加一个单位时()A.y平均增加2.5个单位 B.y平均增加2个单位C.y平均减少2.5个单位 D.y平均减少2个单位9.随机变量,且,则()A.0.20 B.0.30 C.0.70 D.0.8010.的展开式中的系数为A.10 B.20 C.40 D.8011.设x=,y=,z=-,则x,y,z的大小关系是()A.x>y>z B.z>x>yC.y>z>x D.x>z>y12.椭圆的长轴长为()A.1 B.2 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,则__________.14.已知正项数列{an}满足,若a1=2,则数列{an}的前n项和为________.15.若函数为奇函数,则___________.16.从包括甲乙两人的6名学生中选出3人作为代表,记事件:甲被选为代表,事件:乙没有被选为代表,则等于_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AD//BC,BC=2AD,AD⊥CD,PD⊥平面ABCD,E为PB的中点.(1)求证:AE//平面PDC;(2)若BC=CD=PD,求直线AC与平面PBC所成角的余弦值.18.(12分)已知函数.(1)若,求函数的最大值;(2)令,讨论函数的单调区间;(3)若,正实数满足,证明.19.(12分)已知椭圆满足:过椭圆C的右焦点且经过短轴端点的直线的倾斜角为.(Ⅰ)求椭圆的方程;(Ⅱ)设为坐标原点,若点在直线上,点在椭圆C上,且,求线段长度的最小值.20.(12分)我们称点到图形上任意一点距离的最小值为点到图形的距离,记作(1)求点到抛物线的距离;(2)设是长为2的线段,求点集所表示图形的面积;(3)试探究:平面内,动点到定圆的距离与到定点的距离相等的点的轨迹.21.(12分)已知等差数列的前项和为,且,.(1)求数列的通项公式;(2)若,求的值.22.(10分)双曲线的虚轴长为,两条渐近线方程为.(1)求双曲线的方程;(2)双曲线上有两个点,直线和的斜率之积为,判别是否为定值,;(3)经过点的直线且与双曲线有两个交点,直线的倾斜角是,是否存在直线(其中)使得恒成立?(其中分别是点到的距离)若存在,求出的值,若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

根据抛物线标准方程求得,从而得焦点坐标.【题目详解】由题意,,∴焦点在轴正方向上,坐标为.故选A.【题目点拨】本题考查抛物线的标准方程,属于基础题.解题时要掌握抛物线四种标准方程形式.2、A【解题分析】

根据甲的所说的话,可知乙、丙的成绩中一位优秀、一位良好,再结合简单的合情推理逐一分析可得出结果.【题目详解】因为甲、乙、丙、丁四位同学中有两位优秀、两位良好,又甲看了乙、丙的成绩且还不知道自己的成立,即可推出乙、丙的成绩中一位优秀、一位良好,又乙看了丙的成绩,则乙由丙的成绩可以推出自己的成绩,又甲、丁的成绩中一位优秀、一位良好,则丁由甲的成绩可以推出自己的成绩.因此,乙、丁知道自己的成绩,故选:A.【题目点拨】本题考查简单的合情推理,解题时要根据已知的情况逐一分析,必要时可采用分类讨论的思想进行推理,考查逻辑推理能力,属于中等题.3、A【解题分析】

由概率之和为1,列出等式,即可求得k值.【题目详解】由概率和等于1可得:,即.故选A.【题目点拨】本题考查分布列中概率和为1,由知识点列式即可得出结论.4、B【解题分析】如图所示轴与函数围成的面积为,因此故选B.5、C【解题分析】试题分析:先将甲、乙两机看成一个整体,与另外一机进行全排列,共有种排列方法,且留有三个空;再从三个位置中将丙、丁两机进行排列,有种方法;由分步乘法计数原理,得不同的着舰方法有种.考点:排列组合.6、A【解题分析】分析:先利用双曲线的渐近线相互垂直得出该双曲线为等轴双曲线,再利用焦点位置确定双曲线的类型,最后利用几何元素间的等量关系进行求解.详解:因为该双曲线的两条渐近线互相垂直,所以该双曲线为等轴双曲线,即,又双曲线的一个焦点坐标为,所以,即,即该双曲线的方程为.故选D.点睛:本题考查了双曲线的几何性质,要注意以下等价关系的应用:等轴双曲线的离心率为,其两条渐近线相互垂直.7、D【解题分析】

通过导数的定义,即得答案.【题目详解】根据题意得,,故答案为D.【题目点拨】本题主要考查导数的定义,难度不大.8、C【解题分析】试题分析:根据题意,对于回归方程为,当增加一个单位时,则的平均变化为,故可知平均减少个单位,故选C.考点:线性回归方程的应用.9、B【解题分析】分析:由及可得.详解:∵,∴.故选B.点睛:本题考查正态分布,若随机变量中,则正态曲线关于直线对称,因此有,().10、C【解题分析】分析:写出,然后可得结果详解:由题可得令,则所以故选C.点睛:本题主要考查二项式定理,属于基础题。11、D【解题分析】

先对y,z分子有理化,比较它们的大小,再比较x,z的大小得解.【题目详解】y==,z=-=,∵+>+>0,∴z>y.∵x-z=-==>0,∴x>z.∴x>z>y.故答案为D【题目点拨】(1)本题主要考查比较法比较大小,意在考查学生对这些知识的掌握水平和分析推理能力.(2)比差的一般步骤是:作差→变形(配方、因式分解、通分等)→与零比→下结论;比商的一般步骤是:作商→变形(配方、因式分解、通分等)→与1比→下结论.如果两个数都是正数,一般用比商,其它一般用比差.12、B【解题分析】

将椭圆方程化成标准式,根据椭圆的方程可求,进而可得长轴.【题目详解】解:因为,所以,即,,所以,故长轴长为故选:【题目点拨】本题主要考查了椭圆的定义的求解及基本概念的考查,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、-32【解题分析】

通过对原式x赋值1,即可求得答案.【题目详解】令可得,故答案为-32.【题目点拨】本题主要考查二项式定理中赋值法的理解,难度不大.14、.【解题分析】

先化简得到数列{an}是一个等比数列和其公比,再求数列{an}的前n项和.【题目详解】因为,所以,因为数列各项是正项,所以,所以数列是等比数列,且其公比为3,所以数列{an}的前n项和为.故答案为:【题目点拨】(1)本题主要考查等比数列性质的判定,考查等比数列的前n项和,意在考查学生对这些知识的掌握水平.(2)解答本题的关键是得到.15、【解题分析】

根据函数奇偶性的定义和性质建立方程求出a的值,再将1代入即可求解【题目详解】∵函数为奇函数,∴f(﹣x)=﹣f(x),即f(﹣x),∴(2x﹣1)(x+a)=(2x+1)(x﹣a),即2x2+(2a﹣1)x﹣a=2x2﹣(2a﹣1)x﹣a,∴2a﹣1=0,解得a.故故答案为【题目点拨】本题主要考查函数奇偶性的定义和性质的应用,利用函数奇偶性的定义建立方程是解决本题的关键.16、【解题分析】因为,所以。应填答案。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)【解题分析】

(1)取的中点,连结、,推导出四边形是平行四边形,从而,由此能证明平面.(2)推导出,由,得,再推导出,,从而平面,,,,进而平面,连结,,则就是直线与平面所成角,由此能求出直线与平面所成角的余弦值.【题目详解】解:(1)证明:取的中点,连结、,是的中点,,且,,,,且,四边形是平行四边形,,又平面,平面.(2)解:,是等腰三角形,,又,,平面,平面,,又,平面,平面,,,又,平面,连结,,则就是直线与平面所成角,设,在中,解得,,,在中,解得,在中,,直线与平面所成角的余弦值为.【题目点拨】本题考查线面平行的证明,考查线面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.18、(1)f(x)的最大值为f(1)=1.(2)见解析(3)见解析【解题分析】试题分析:(Ⅰ)代入求出值,利用导数求出函数的极值,进而判断最值;(Ⅱ)求出,求出导函数,分别对参数分类讨论,确定导函数的正负,得出函数的单调性;(Ⅲ)整理方程,观察题的特点,变形得,故只需求解右式的范围即可,利用构造函数,求导的方法求出右式的最小值.试题解析:(Ⅰ)因为,所以a=-2,此时f(x)=lnx-x2+x,f'(x)=-2x+1,由f'(x)=1,得x=1,∴f(x)在(1,1)上单调递增,在(1,+∞)上单调递减,故当x=1时函数有极大值,也是最大值,所以f(x)的最大值为f(1)=1.

(Ⅱ)g(x)=f(x)-ax2-ax+1,∴g(x)=lnx-ax2-ax+x+1,当a=1时,g'(x)>1,g(x)单调递增;当a>1时,x∈(1,)时,g'(x)>1,g(x)单调递增;x∈(,+∞)时,g'(x)<1,g(x)单调递减;当a<1时,g'(x)>1,g(x)单调递增;(Ⅲ)当a=2时,f(x)=lnx+x2+x,x>1,.由f(x1)+f(x2)+x1x2=1,即lnx1+x12+x1+lnx2+x22+x2+x2x1=1.从而(x1+x2)2+(x1+x2)=x1x2-ln(x1x2),.令t=x2x1,则由φ(t)=t-lnt得,φ'(t)=.可知,φ(t)在区间(1,1)上单调递减,在区间(1,+∞)上单调递增.所以φ(t)≥1,所以(x1+x2)2+(x1+x2)≥1,正实数x1,x2,∴.19、(I);(Ⅱ).【解题分析】

(Ⅰ)设出短轴端点的坐标,根据过右焦点与短轴端点的直线的倾斜角为,可以求出斜率,这样就可以求出,再根据右焦点,可求出,最后利用求出,最后写出椭圆标准方程;(Ⅱ)设点的坐标分别为,其中,由,可得出等式,求出线段长度的表达式,结合求出的等式和基本不等式,可以求出线段长度的最小值.【题目详解】(I)设椭圆的短轴端点为(若为上端点则倾斜角为钝角),则过右焦点与短轴端点的直线的斜率,(Ⅱ)设点的坐标分别为,其中,即就是,解得.又,且当时等号成立,所以长度的最小值为【题目点拨】本题考查了求椭圆的标准方程,考查了利用基本不等式求线段长最小值问题,考查了数学运算能力.20、(1)(2)(3)见解析【解题分析】

(1)设A是抛物线上任意一点,先求出|PA|的函数表达式,再求函数的最小值得解;(2)由题意知集合所表示的图形是一个边长为2的正方形和两个半径是1的半圆,再求出面积;(3)将平面内到定圆的距离转化为到圆上动点的距离,再分点现圆的位置关系,结合圆锥曲线的定义即可解决.【题目详解】(1)设A是抛物线上任意一点,则,因为,所以当时,.点到抛物线的距离.(2)设线段的端点分别为,,以直线为轴,的中点为原点建立直角坐标系,则,,点集由如下曲线围成:,,,,,,,,集合所表示的图形是一个边长为2的正方形和两个半径是1的半圆,其面积为.(3)设动点为,当点在圆内不与圆心重合,连接并延长,交于圆上一点,由题意知,,所以,即的轨迹为一椭圆;如图.如果是点在圆外,由,得,为一定值,即的轨迹为双曲线的一支;当点与圆心重合,要使,则必然在与圆的同心圆,即的轨迹为一圆.【题目点拨】本题主要考查新定义的理解和应用,考查抛物线中的最值问题,考查轨迹问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.21、(1);(2)4.【解题分析】

(1)运用等差数列的性质求得公差d,再由及d求得通项公式即可.(2)利用前n项和公式直接求解即可.【题目详解】(1)设数列的公差为,∴,故.(2),∴,解得或(舍去),∴.【题目点拨】本题考查等差数列的通项公式及项数的求法

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论