




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省东营市胜利第二中学2024届高二数学第二学期期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知f(x)=2x2-xA.0,12 B.12,12.“三个臭皮匠,赛过诸葛亮”,这是我们常说的口头禅,主要是说集体智慧的强大.假设李某智商较高,他独自一人解决项目M的概率为;同时,有个水平相同的人也在研究项目M,他们各自独立地解决项目M的概率都是.现在李某单独研究项目M,且这个人组成的团队也同时研究项目M,设这个人团队解决项目M的概率为,若,则的最小值是()A.3 B.4 C.5 D.63.的值等于()A.1 B.-1 C. D.4.用,,,,这个数字组成没有重复数字的三位数,其中偶数共有()A.个 B.个 C.个 D.个5.如图所示的五个区域中,中心区域是一幅图画,现要求在其余四个区域中涂色,有四种颜色可供选择.要求每个区域只涂一种颜色且相邻区域所涂颜色不同,则不同的涂色方法种数为()A.56 B.72 C.64 D.846.甲乙丙三人代表班级参加校运会的跑步,跳远,铅球比赛,每人参加一项,每项都要有人参加,他们的身高各不同.现了解到以下情况:(1)甲不是最高的;(2)最高的没报铅球;(3)最矮的参加了跳远;(4)乙不是最矮的,也没参加跑步;可以判断丙参加的比赛项目是()A.跑步比赛 B.跳远比赛 C.铅球比赛 D.无法判断7.在上可导的函数的图像如图所示,则关于的不等式的解集为()A. B. C. D.8.已知,,若包含于,则实数的取值范围是()A. B. C. D.9.曲线在点处的切线的斜率为()A. B. C. D.10.若,则下列结论正确的是()A. B. C. D.11.设曲线在点处的切线方程为,则()A.1 B.2 C.3 D.412.已知函数,为的导函数,则的值为()A.0 B.1 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,有以下结论:①若,则;②在区间上是增函数;③的图象与图象关于轴对称;④设函数,当时,.其中正确的结论为__________.14.在二项展开式中,常数项是_______.15.在二项式展开式中,第五项为________.16.要排出某班一天中语文、数学、政治、英语、体育、艺术6门课各一节的课程表,要求数学课排在前3节,英语课不排在第6节,则不同的排法种数为.(以数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,直线的参数方程为为参数),在极坐标系(与直角坐标系取相同的单位长度,且以原点O为极点,以轴正半轴为极轴)中,圆C的方程为.(1)求圆C的直角坐标方程;(2)设圆C与直线交于A,B两点,若点P坐标为(3,),求的值.18.(12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样的方法从该地区调查了500位老年人,结果如下:附:的观测值(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)在犯错误的概率不超过0.01的前提下是否可认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?请说明理由.19.(12分)对某班50名学生的数学成绩和对数学的兴趣进行了调查,统计数据如下表所示:对数学感兴趣对数学不感兴趣合计数学成绩好17825数学成绩一般52025合计222850(1)试运用独立性检验的思想方法分析:学生学习数学的兴趣与数学成绩是否有关系,并说明理由.(2)从数学成绩好的同学中抽取4人继续调查,设对数学感兴趣的人数为,求的分布列和数学期望.附:0.0500.0100.0013.8416.63510.828.20.(12分)如图,在棱长为2的正方体中,点是棱的中点,点在棱上,且满足.(Ⅰ)求证:;(Ⅱ)求平面与平面所成锐二面角的余弦值.21.(12分)某种产品的以往各年的宣传费用支出(万元)与销售量(万件)之间有如下对应数据2456843678(1)试求回归直线方程;(2)设该产品的单件售价与单件生产成本的差为(元),若与销售量(万件)的函数关系是,试估计宣传费用支出为多少万元时,销售该产品的利润最大?(注:销售利润=销售额-生产成本-宣传费用)(参考数据与公式:,,)22.(10分)在复平面内,复数(其中).(1)若复数为实数,求的值;(2)若复数为纯虚数,求的值;(3)对应的点在第四象限,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
求出函数y=fx的定义域,并对该函数求导,解不等式f'x【题目详解】函数y=fx的定义域为0,+∞f'令f'x<0,得12<x<1,因此,函数y=f【题目点拨】本题考查利用导数求函数的单调区间,除了解导数不等式之外,还要注意将解集与定义域取交集,考查计算能力,属于中等题。2、B【解题分析】
设这个人团队解决项目的概率为,则,由,得,由此能求出的最小值.【题目详解】李某智商较高,他独自一人解决项目的概率为,有个水平相同的人也在研究项目,他们各自独立地解决项目的概率都是0.1,现在李某单独研究项目,且这个人组成的团队也同时研究,设这个人团队解决项目的概率为,则,,,解得.的最小值是1.故选.【题目点拨】本题考查实数的最小值的求法,考查次独立重复试验中事件恰好发生次的概率的计算公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.3、B【解题分析】
根据复数的计算方法,可得的值,进而可得,可得答案.【题目详解】解:根据复数的计算方法,可得,则,故选:.【题目点拨】本题考查复数的混合运算,解本题时,注意先计算括号内,再来计算复数平方,属于基础题.4、B【解题分析】
利用分类计数原理,个位数字为时有;个位数字为或时均为,求和即可.【题目详解】由已知得:个位数字为的偶数有,个位数字为的偶数为,个位数字为的偶数有,所以符合条件的偶数共有.故选:B【题目点拨】本题考查了分类计数运算、排列、组合,属于基础题.5、D【解题分析】分析:每个区域只涂一种颜色,相邻区域颜色不相同,然后分类研究,A、C不同色和A、C同色两大类.详解:分两种情况:(1)A、C不同色(注意:B、D可同色、也可不同色,D只要不与A、C同色,所以D可以从剩余的2中颜色中任意取一色):有4×3×2×2=48种;(2)A、C同色(注意:B、D可同色、也可不同色,D只要不与A、C同色,所以D可以从剩余的3中颜色中任意取一色):有4×3×1×3=36种.共有84种,故答案为:D.点睛:(1)本题主要考查排列组合的综合问题,意在考查学生对这些知识的掌握水平和分析推理能力.(2)排列组合常用方法有一般问题直接法、相邻问题捆绑法、不相邻问题插空法、特殊对象优先法、等概率问题缩倍法、至少问题间接法、复杂问题分类法、小数问题列举法.6、A【解题分析】分析:由(1),(3),(4)可知,乙参加了铅球,由(2)可知乙不是最高的,所以三人中乙身高居中;再由(1)可知,甲是最矮的,参加了跳远,即可得出结论.详解:由(1),(3),(4)可知,乙参加了铅球,由(2)可知乙不是最高的,所以三人中乙身高居中;再由(1)可知,甲是最矮的,参加了跳远,所以丙最高,参加了跑步比赛.故选:A.点睛:本题考查合情推理,考查学生分析解决问题的能力.7、B【解题分析】
分别讨论三种情况,然后求并集得到答案.【题目详解】当时:函数单调递增,根据图形知:或当时:不成立当时:函数单调递减根据图形知:综上所述:故答案选B【题目点拨】本题考查了根据图像判断函数的单调性,意在考查学生的读图能力.8、B【解题分析】
解一元二次不等式求得集合,根据是的子集列不等式,由此求得的取值范围.【题目详解】由解得,所以,由于且包含于,所以,故的取值范围是.故选:B【题目点拨】本小题主要考查一元二次不等式的解法,考查根据包含关系求参数的取值范围,属于基础题.9、B【解题分析】
求导后代入即可得出答案。【题目详解】故选B【题目点拨】本题考查利用导函数求切线斜率。属于基础题。10、C【解题分析】
先用作为分段点,找到小于和大于的数.然后利用次方的方法比较大小.【题目详解】易得,而,故,所以本小题选C.【题目点拨】本小题主要考查指数式和对数式比较大小,考查指数函数和对数函数的性质,属于基础题.11、D【解题分析】
利用导数的几何意义得直线的斜率,列出a的方程即可求解【题目详解】因为,且在点处的切线的斜率为3,所以,即.故选:D【题目点拨】本题考查导数的几何意义,考查运算求解能力,是基础题12、D【解题分析】
根据题意,由导数的计算公式求出函数的导数,将代入导数的解析式,计算可得答案.【题目详解】解:根据题意,,则,则;故选:.【题目点拨】本题考查导数的计算,关键是掌握导数的计算公式,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、②③④【解题分析】
首先化简函数解析式,逐一分析选项,得到答案.【题目详解】①当时,函数的周期为,,或,所以①不正确;②时,,所以是增函数,②正确;③函数还可以化简为,所以与关于轴对称,正确;④,当时,,,④正确故选②③④【题目点拨】本题考查了三角函数的化简和三角函数的性质,属于中档题型.14、60【解题分析】
首先写出二项展开式的通项公式,并求指定项的值,代入求常数项.【题目详解】展开式的通项公式是,当时,.故答案为:60【题目点拨】本题考查二项展开式的指定项,意在考查公式的熟练掌握,属于基础题型.15、60【解题分析】
根据二项式的通项公式求解.【题目详解】二项式的展开式的通项公式为:,令,则,故第五项为60.【题目点拨】本题考查二项式定理的通项公式,注意是第项.16、288.【解题分析】解:∵数学课排在前3节,英语课不排在第6节,∴先排数学课有种排法,再排最后一节有种排法,剩余的有种排法,∴根据分步计数原理知共有=288种排法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)由极坐标与平面直角坐标之间的转化公式求得;(2)利用直线参数方程中的几何意义求解.【题目详解】解,(1)∵圆的极坐标方程为∴(*)又∵,∴代入(*)即得圆的直角坐标方程为(2)直线1的参数方程可化为代入圆c的直角坐标方程,得,∴∴【题目点拨】本题考查平面直角坐标系和极坐标的互化,以及直线的参数方程中的的几何意义,属于中档题.18、(1);(2)见解析;(3)见解析【解题分析】
(1)用需要志愿者提供帮助的人数除以老年人总数可得;(2)利用观测值公式以及列联表可计算观测值,再结合临界值表可得;(3)根据需要志愿者提供帮助的男女人数存在显著差异,可得采用分层抽样方法比采用简单随机抽样的方法更好.【题目详解】(1)调查的500位老人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估算值为.(2)随机变量的观测值.由于,因此,在犯错误的概率不超过0.01的前提下认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)由(2)的结论知,该地区的老年人是否需要帮助与性别有关,并且从样本数据中能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层,并采用分层抽样方法比采用简单随机抽样的方法更好.【题目点拨】本题考查了分层抽样,独立性检验,属中档题.19、(1)有99.9%的把握认为有关系,理由详见解析;(2)分布列详见解析,数学期望为2.72【解题分析】
根据表中数据计算观测值,对照临界值得出结论;
由题意知随机变量X的可能取值,计算对应的概率值,写出分布列和数学期望值.【题目详解】(1).因为,所以有99.9%的把握认为有关系.(2)由题意知,的取值为0,1,2,3,1.因为,.所以,分布列为01231所以,.【题目点拨】本题考查了独立性检验与离散型随机变量的分布列应用问题,是中档题.20、(Ⅰ)详见解析;(Ⅱ).【解题分析】
(Ⅰ)由正方体的性质得出平面,再由直线与平面垂直的性质可证明出;(Ⅱ)以为原点,,,分别为,,轴建立空间直角坐标系,计算出平面和平面的法向量,利用向量法求出这两个平面所成锐二面角的余弦值.【题目详解】(Ⅰ)在正方体中,平面,平面,∴;(Ⅱ)如图,以为原点,,,分别为,,轴建立空间直角坐标系,则,,,,∴,,,设为平面的一个法向量,则,即,令,可得,∵平面,∴为平面的一个法向量,∴,∴平面与平面所成锐二面角的余弦值为.【题目点拨】本题考查直线与直线垂直的证明,考查利用空间向量法计算二面角,解题的关键就
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 肉类罐头加工过程中的食品安全隐患与预防考核试卷
- 稀土金属冶炼与战略新兴产业考核试卷
- 玻璃纤维射击靶考核试卷
- 篷布企业供应链风险管理考核试卷
- 精神障碍的康复教育介入考核试卷
- 四川大学《移动应用开发(Andoid)》2023-2024学年第一学期期末试卷
- 上海市长宁区高级中学2025年初三下期中生物试题试卷含解析
- 南平市建瓯市2025年重点中学小升初数学入学考试卷含解析
- 山东华宇工学院《中外文化交流(Ⅰ)》2023-2024学年第一学期期末试卷
- 辽宁省普兰店市2025年高考语文试题疯狂小题抢高分含解析
- 蒸汽管道试运行方案
- 2024高考物理一轮复习第66讲分子动理论内能(练习)(学生版+解析)
- 辅警考试公安基础知识考试试题库及答案
- TWJQMA 010-2024 露地甜瓜改良式滴灌栽培技术
- 8推翻帝制 民族觉醒 (第三课时)教学设计-五年级下册道德与法治
- 2024年北京东城区中考一模数学试题(含答案解析)
- 2024年欧洲干混砂浆市场主要企业市场占有率及排名
- 中小学违规征订教辅材料问题专项整治实施方案
- 《无人机测绘技能训练模块》课件-模块13:无人机航测综合生产案例
- 2024年沪教版六年级下册数学期末测试卷及答案1套
- 项目工作分解结构(EPC项目)
评论
0/150
提交评论