版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届辽宁省朝阳市普通高中数学高二下期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若集合,,则等于()A. B. C. D.2.若、、,且,则下列不等式中一定成立的是()A. B. C. D.3.设,复数,则在复平面内的对应点一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知函数的图象与直线有两个交点,则m的取值范围是()A. B. C. D.5.设非零向量满足,,则向量间的夹角为()A.150° B.60°C.120° D.30°6.命题“”的否定是()A. B.C. D.7.设实数满足约束条件,则的最大值为()A. B.1 C.6 D.98.已知平面α与平面β相交,直线m⊥α,则()A.β内必存在直线与m平行,且存在直线与m垂直B.β内不一定存在直线与m平行,不一定存在直线与m垂直C.β内必存在直线与m平行,不一定存在直线与m垂直D.β内不一定存在直线与m平行,但必存在直线与m垂直9.某运动队有男运动员4名,女运动员3名,若选派2人外出参加比赛,且至少有1名女运动员入选,则不同的选法共有()A.6种 B.12种 C.15种 D.21种10.若双曲线的一条渐近线经过点,则此双曲线的离心率为()A. B. C. D.11.设是定义域为的偶函数,且在单调递减,则()A.B.C.D.12.己知复数z满足,则A. B. C.5 D.25二、填空题:本题共4小题,每小题5分,共20分。13.在极坐标系中,点到直线的距离为_____.14.函数,当时,恒成立,求.15.正方体ABCD-A1B1C1D16.若,则=______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,且是第三象限角,求,.18.(12分)已知,.(1)证明:.(2)证明:.19.(12分)设椭圆的右焦点为,点,若(其中为坐标原点).(Ⅰ)求椭圆的方程.(Ⅱ)设是椭圆上的任意一点,为圆的任意一条直径(、为直径的两个端点),求的最大值.20.(12分)大型综艺节目《最强大脑》中,有一个游戏叫做盲拧魔方,就是玩家先观察魔方状态并进行记忆,记住后蒙住眼睛快速还原魔方.根据调查显示,是否喜欢盲拧魔方与性别有关.为了验证这个结论,某兴趣小组随机抽取了100名魔方爱好者进行调查,得到的部分数据如表所示:已知在全部100人中随机抽取1人抽到喜欢盲拧的概率为.喜欢盲拧不喜欢盲拧总计男10女20总计100表(1)并邀请这100人中的喜欢盲拧的人参加盲拧三阶魔方比赛,其完成时间的频率分布如表所示:完成时间(分钟)[0,10)[10,20)[20,30)[30,40]频率0.20.40.30.1表(2)(Ⅰ)将表(1)补充完整,并判断能否在犯错误的概率不超过0.001的前提下认为是否喜欢盲拧与性别有关?(Ⅱ)现从表(2)中完成时间在[30,40]内的人中任意抽取2人对他们的盲拧情况进行视频记录,记完成时间在[30,40]内的甲、乙、丙3人中恰有一人被抽到为事件A,求事件A发生的概率.(参考公式:,其中)P(K2≥k0)0.100.050.0250.0100.0050.001k02.7063.8415.0246.6357.87910.82821.(12分)已知,.(1)若且的最小值为1,求的值;(2)不等式的解集为,不等式的解集为,,求的取值范围.22.(10分)已知复数z满足|3+4i|+z=1+3i.(1)求;(2)求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】分析:先解绝对值不等式得集合A,再解分式不等式得集合B,最后根据交集定义求结果.详解:因为,所以因为,所以或x>3,因此,选D.点睛:集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图.2、D【解题分析】
对,利用分析法证明;对,不式等两边同时乘以一个正数,不等式的方向不变,乘以0再根据不等式是否取等进行考虑;对,考虑的情况;对,利用同向不等式的可乘性.【题目详解】对,,因为大小无法确定,故不一定成立;对,当时,才能成立,故也不一定成立;对,当时不成立,故也不一定成立;对,,故一定成立.故选:D.【题目点拨】本题考查不等式性质的运用,考查不等式在特殊情况下能否成立的问题,考查思维的严谨性.3、C【解题分析】
在复平面内的对应点考查点横纵坐标的正负,分情况讨论即可.【题目详解】由题得,在复平面内的对应点为.当,即时,二次函数取值范围有正有负,故在复平面内的对应点可以在一二象限.当,即时,二次函数,故在复平面内的对应点可以在第四象限.故在复平面内的对应点一定不在第三象限.故选:C【题目点拨】本题主要考查了复平面的基本定义与根据参数范围求解函数范围的问题,属于基础题型.4、A【解题分析】
两个函数图象的交点个数问题,转化为方程有两个不同的根,再转化为函数零点问题,设出函数,求单调区间,分类讨论,求出符合题意的范围即可.【题目详解】解:函数的图象与直线有两个交点可转化为函数有两个零点,导函数为,当时,恒成立,函数在R上单调递减,不可能有两个零点;当时,令,可得,函数在上单调递减,在上单调递增,所以的最小值为.令,则,所以在上单调递增,在上单调递减.所以.所以的最小值,则m的取值范围是.故选:【题目点拨】本题考查函数零点问题,利用方程思想转化与导数求解是解决本题的关键,属于中档偏难题.5、C【解题分析】
利用平方运算得到夹角和模长的关系,从而求得夹角的余弦值,进而得到夹角.【题目详解】即本题正确选项:【题目点拨】本题考查向量夹角的求解,关键是利用平方运算和数量积运算将问题变为模长之间的关系,求得夹角的余弦值,从而得到所求角.6、C【解题分析】
命题的否定:任意变存在,并对结论进行否定.【题目详解】命题的否定需要将限定词和结论同时否定,题目中:为限定词,为条件,为结论;而的否定为,的否定为,所以的否定为故本题正确答案为C.【题目点拨】本题考查了命题的否定,属于简单题.7、D【解题分析】
作出不等式组表示的平面区域,作出目标函数对应的直线,结合图像求得结果【题目详解】解:画出实数满足约束条件表示的可行域,由得,则表示直线在轴上的截距,截距越大,越大,作出目标函数对应的直线由图可知将直线向上平移,经过点时,直线的截距最大,由,得点的坐标为所以的最大值为故选:D【题目点拨】此题考查画不等式组表示的平面区域,考查数形结合求函数的最值.8、D【解题分析】
可在正方体中选择两个相交平面,再选择由顶点构成且与其中一个面垂直的直线,通过变化直线的位置可得正确的选项.【题目详解】
如图,平面平面,平面,但平面内无直线与平行,故A错.又设平面平面,则,因,故,故B、C错,综上,选D.【题目点拨】本题考察线、面的位置关系,此种类型问题是易错题,可选择合适的几何体去构造符合条件的点、线、面的位置关系或不符合条件的反例.9、C【解题分析】
先求出所有的方法数,再求出没有女生入选的方法数,相减可得至少有1位女生入选的方法数.【题目详解】解:从3位女生,4位男生中选2人参加比赛,所有的方法有种,
其中没有女生入选的方法有种,
故至少有1位女生入选的方法有21−6=15种.
故选:C.【题目点拨】本题主要考查排列组合的简单应用,属于中档题.10、D【解题分析】因为双曲线的一条渐近线经过点(3,-4),故选D.考点:双曲线的简单性质【名师点睛】渐近线是双曲线独特的性质,在解决有关双曲线问题时,需结合渐近线从数形结合上找突破口.与渐近线有关的结论或方法还有:(1)与双曲线共渐近线的可设为;(2)若渐近线方程为,则可设为;(3)双曲线的焦点到渐近线的距离等于虚半轴长;(4)的一条渐近线的斜率为.可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小.另外解决不等式恒成立问题关键是等价转化,其实质是确定极端或极限位置.11、C【解题分析】
由已知函数为偶函数,把,转化为同一个单调区间上,再比较大小.【题目详解】是R的偶函数,.,又在(0,+∞)单调递减,∴,,故选C.【题目点拨】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值.12、B【解题分析】
先计算复数再计算.【题目详解】故答案选B【题目点拨】本题考查了复数的化简,复数的模,属于基础题型.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
把点的极坐标化为直角坐标,把直线的极坐标方程化为直角坐标方程,利用点到直线的距离公式求出A到直线的距离.【题目详解】解:点A(2,)的直角坐标为(0,2),直线ρ(cosθ+sinθ)=6的直角坐标方程为x+y﹣6=0,利用点到直线的距离公式可得,点A(2,)到直线ρ(cosθ+sinθ)=6的距离为,故答案为.【题目点拨】本题主要考查把极坐标方程化为直角坐标方程的方法,点到直线的距离公式的应用,属于基础题.14、【解题分析】试题分析:由题意得,,因此,从而,考点:二次函数性质15、60°【解题分析】
由正方体的性质可以知道:DC1//AB1,根据异面直线所成角的定义,可以知道∠B1AD1【题目详解】如图所示:连接AB1,因为DC1//AB1,所以∠AB1、AD1、D1∠B1AD1=60°故答案为60°【题目点拨】本题考查了异面直线所成的角,掌握正方体的性质是解题的关键.16、365【解题分析】分析:令代入可知的值,令代入可求得的值,然后将两式相加可求得的值.详解:中,令代入可知令代入可得,除以相加除以2可得.即答案为365.点睛:本题主要考查的是二项展开式各项系数和,充分利用赋值法是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解题分析】
由,结合是第三象限角,解方程组即可得结果.【题目详解】由可得由且是第三象限角,【题目点拨】本题主要考查同角三角函数之间的关系的应用,属于中档题.同角三角函数之间的关系包含平方关系与商的关系,平方关系是正弦与余弦值之间的转换,商的关系是正余弦与正切之间的转换18、(1)见解析(2)见解析【解题分析】
(1)不等式左右都大于0,两边同时平方,整理即要证明,再平方,且,,即得证;(2)证明即可,提公因式整理得证。【题目详解】证明:(1)欲证明,只需证明,即证,两边平方,得,因为,所以显然成立,得证.(2)因为,所以.【题目点拨】本题考查证明不等式,(1)用两边同时平方的方法,(2)用做差法来证明,注意(1)可以平方的条件是不等式两边都大于零。19、(Ⅰ)(Ⅱ)的最大值为.【解题分析】试题分析:(Ⅰ)结合题意可得所以,由可解得,故得椭圆方程.(Ⅱ)设圆的圆心为,由向量的知识可得,从而将求的最大值转化为求的最大值.设是椭圆上的任意一点,可得,所以当时,取得最大值,从而的最大值为.试题解析:(I)由题意知,,,所以由,得,解得,所以椭圆的方程为.(II)设圆的圆心为,则.从而求的最大值转化为求的最大值.设是椭圆上的任意一点,则,所以,又点,所以.因为,所以当时,取得最大值,所以的最大值为.点睛:圆锥曲线中最值(范围)问题的解决方法若题目的条件和结论能体现一种明确的函数关系,则可建立目标函数,再求这个函数的最值.常从以下方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;③利用基本不等式求出参数的取值范围;④利用函数的值域的求法,确定参数的取值范围.20、(I)表(1)见解析,在犯错误的概率不超过0.001的前提下认为喜欢盲拧与性别有关;(II)【解题分析】
(I)根据题意计算出在全部的100人中喜欢盲拧的人数,可将表(1)补充完整,利用公式求得,与临界值比较,即可得到结论;(II)首先计算出成功完成时间在内的人数,再利用列举法和古典概型的概率计算公式,计算出所求概率。【题目详解】(I)在全部的100人中喜欢盲拧的人数为人,根据题意列联表如下:喜欢盲拧不喜欢盲拧总计男401050女203050总计6040100由表中数据计算所以能在犯错误的概率不超过0.001的前提下认为喜欢盲拧与性别有关;(Ⅱ)成功完成时间在[30,40]内的人数为设为甲、乙、丙,A,B,C,依题意:从该6人中选出2人,所有可能的情况有:甲乙,甲丙,甲A,甲B,甲C,乙丙,乙A,乙B,乙C,丙A,丙B,丙C,AB,AC,BC.共15种,其中甲、乙、丙3人中恰有一人被抽到有:甲A,甲B,甲C,乙A,乙B,乙C,丙A,丙B,丙C,共9种,故事件A发生的概率为【题目点拨】本题考查独立性检验以及古典概型的概率计算,属于基础题。21、(1);(2)【解题分析】试题分析:(1)利用绝对值三角不等式可得,解出方程即可;(2)易得,即,即且,再根据列出不等式即可得结果.试题解析:(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设备故障诊断与排除好用手册
- 面向高级遗体防腐师的职业发展路径规划
- 幼儿园水瓶清洗通知书
- 广东危化品复工通知书
- 广东金融学院官网通知书
- 广州海伦堡停电通知书
- 广平高速中标通知书
- 广西动车涨价通知书
- 库车员工聚餐通知书
- 延迟交房烂尾通知书
- 冠脉搭桥术后患者的护理
- DZ/T 0259-2014陆地石油和天然气调查规范
- 单位定点洗车装潢协议书
- 2024年山东省港口集团有限公司招聘真题
- 化工安全警示教育课件
- 钢管加工合同协议
- 肠外营养并发症及护理
- 2025年海飞丝产品的市场定位和消费者行为分析报告
- 小学科学3-6年级实验目一览表(苏教版)
- GB/T 23595.2-2025LED用稀土荧光粉试验方法第2部分:相对亮度的测定
- ICU轮转护士带教计划
评论
0/150
提交评论