2024届鸡西市重点中学高二数学第二学期期末学业质量监测模拟试题含解析_第1页
2024届鸡西市重点中学高二数学第二学期期末学业质量监测模拟试题含解析_第2页
2024届鸡西市重点中学高二数学第二学期期末学业质量监测模拟试题含解析_第3页
2024届鸡西市重点中学高二数学第二学期期末学业质量监测模拟试题含解析_第4页
2024届鸡西市重点中学高二数学第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届鸡西市重点中学高二数学第二学期期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.证明等式时,某学生的证明过程如下(1)当n=1时,,等式成立;(2)假设时,等式成立,即,则当时,,所以当时,等式也成立,故原式成立.那么上述证明()A.过程全都正确 B.当n=1时验证不正确C.归纳假设不正确 D.从到的推理不正确2.由2,3,5,0组成的没有重复数字的四位偶数的个数是()A.12 B.10 C.8 D.143.在中,已知,,,为线段上的一点,且,则的最小值为()A. B. C. D.4.设集合,则()A. B. C. D.5.把座位编号为1,2,3,4,5,6的六张电影票全部分给甲、乙、丙、丁四个人,每人最多得两张,甲、乙各分得一张电影票,且甲所得电影票的编号总大于乙所得电影票的编号,则不同的分法共有()A.90种 B.120种 C.180种 D.240种6.将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为()A.0795 B.0780 C.0810 D.08157.某锥体的正视图和侧视图均为如图所示的等腰三角形,则该几何体的体积最小值为()A. B. C.1 D.28.已知椭圆的短轴长为2,上顶点为,左顶点为,分别是椭圆的左、右焦点,且的面积为,点为椭圆上的任意一点,则的取值范围为()A. B. C. D.9.设抛物线y2=2x的焦点为F,过点M(3,0)的直线与抛物线相交于A,B两点,与抛物线的准线相交于C,BF=2,则△BCFA.23 B.34 C.410.下面命题正确的有()①a,b是两个相等的实数,则是纯虚数;②任何两个复数不能比较大小;③若,且,则.A.0个 B.1个 C.2个 D.3个11.某班4名同学参加数学测试,每人通过测试的概率均为,且彼此相互独立,若X为4名同学通过测试的人数,则D(X)的值为()A.1 B.2 C.3 D.412.已知为定义在上的奇函数,且满足,则的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,在中,,和分别是边和上一点,,将沿折起到点位置,则该四棱锥体积的最大值为_______.14.若x,y满足约束条件则z=x−2y的最小值为__________.15.已知正数满足,则的最小值____________.16.在棱长均为的正三棱柱中,________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(Ⅰ)求函数单调递增区间;(Ⅱ)当时,求函数的最大值和最小值.18.(12分)已知均为正数,证明:,并确定为何值时,等号成立.19.(12分)某种子培育基地新研发了两种型号的种子,从中选出90粒进行发芽试验,并根据结果对种子进行改良.将试验结果汇总整理绘制成如下列联表:(1)将列联表补充完整,并判断是否有99%的把握认为发芽和种子型号有关;(2)若按照分层抽样的方式,从不发芽的种子中任意抽取20粒作为研究小样本,并从这20粒研究小样本中任意取出3粒种子,设取出的型号的种子数为,求的分布列与期望.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,其中.20.(12分)已知命题方程表示双曲线,命题点在圆的内部.若为假命题,也为假命题,求的取值范围.21.(12分)如图,四棱锥P-ABCD中,底面ABCD是边长为2的正方形,,,且,E为PD中点.(I)求证:平面ABCD;(II)求二面角B-AE-C的正弦值.22.(10分)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(I)求接受甲种心理暗示的志愿者中包含A1但不包含的频率。(II)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望EX.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】分析:由题意结合数学归纳法的证明方法考查所给的证明过程是否存在错误即可.详解:考查所给的证明过程:当时验证是正确的,归纳假设是正确的,从到的推理也是正确的,即证明过程中不存在任何的问题.本题选择A选项.点睛:本题主要考查数学归纳法的概念及其应用,意在考查学生的转化能力和计算求解能力.2、B【解题分析】

根据个位是和分成两种情况进行分类讨论,由此计算出所有可能的没有重复数字的四位偶数的个数.【题目详解】当0在个位数上时,有个;当2在个位数上时,首位从5,3中选1,有两种选择,剩余两个数在中间排列有2种方式,所以有个所以共有10个.故选:B【题目点拨】本小题主要考查简单排列组合的计算,属于基础题.3、C【解题分析】分析:△ABC中设AB=c,BC=a,AC=b,由sinB=cosA•sinC结合三角形的内角和及和角的正弦公式化简可求cosC=0即C=90°,再由,S△ABC=6可得bccosA=9,可求得c=5,b=3,a=4,考虑建立以AC所在的直线为x轴,以BC所在的直线为y轴建立直角坐标系,由P为线段AB上的一点,则存在实数λ使得=(3λ,4﹣4λ)(0≤λ≤1),设则,,由=(x,0)+(0,y)=(x,y)可得x=3λ,y=4﹣4λ则4x+3y=12而,利用基本不等式求解最小值.详解:△ABC中设AB=c,BC=a,AC=b∵sinB=cosA•sinC,∴sin(A+C)=sinCcosA,即sinAcosC+sinCcosA=sinCcosA,∴sinAcosC=0,∵sinA≠0,∴cosC=0C=90°∵,S△ABC=6∴bccosA=9,∴,根据直角三角形可得sinA=,cosA=,bc=15∴c=5,b=3,a=4以AC所在的直线为x轴,以BC所在的直线为y轴建立直角坐标系可得C(0,0)A(3,0)B(0,4)P为线段AB上的一点,则存在实数λ使得=(3λ,4﹣4λ)(0≤λ≤1)设,则,∴=(x,0)+(0,y)=(x,y)∴x=3λ,y=4﹣4λ则4x+3y=12=故所求的最小值为故选C.点睛:本题是一道构思非常巧妙的试题,综合考查了三角形的内角和定理、两角和的正弦公式及基本不等式求解最值问题,解题的关键是理解把已知所给的是一个单位向量,从而可用x,y表示,建立x,y与λ的关系,解决本题的第二个关键点在于由x=3λ,y=4﹣4λ发现4x+3y=12为定值,从而考虑利用基本不等式求解最小值4、B【解题分析】分析:首先求得A,B,然后进行交集运算即可.详解:求解函数的定义域可得:,由函数的定义域可得:,结合交集的定义可知:.本题选择B选项.点睛:本题主要考查函数定义域的求解,交集的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.5、A【解题分析】

从6张电影票中任选2张给甲、乙两人,共种方法;再将剩余4张票平均分给丙丁2人,共有种方法;根据分步乘法计数原理即可求得结果.【题目详解】分两步:先从6张电影票中任选2张给甲,乙两人,有种分法;再分配剩余的4张,而每人最多两张,所以每人各得两张,有种分法,由分步原理得,共有种分法.故选:A【题目点拨】本题主要考查分步乘法计数原理与组合的综合问题.6、A【解题分析】分析:先确定间距,再根据等差数列通项公式求结果.详解:因为系统抽样的方法抽签,所以间距为所以抽取的第40个数为选A.点睛:本题考查系统抽样概念,考查基本求解能力.7、B【解题分析】

锥体高一定,底面积最小时体积最小,底面图形可以是圆,等腰直角三角形,正方形,等腰直角三角形是面积最小,计算得到答案.【题目详解】锥体高一定,底面积最小时体积最小,底面图形可以是圆,等腰直角三角形,正方形,等腰直角三角形是面积最小故答案选B【题目点拨】本题考查了锥体的体积,判断底面是等腰直角三角形是解题的关键.8、D【解题分析】分析:由得椭圆的短轴长为,可得,,可得,从而可得结果.详解:由得椭圆的短轴长为,,解得,,设,则,,即,,故选D.点睛:本题考查题意的简单性质,题意的定义的有意义,属于中档题.求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴、等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.9、C【解题分析】∵抛物线方程为y2∴抛物线的焦点F坐标为(12,0)如图,设A(x1,y1)由抛物线的定义可得BF=x2+将x2=32代入∴点B的坐标为(3∴直线AB的方程为y-0-3-0将x=y22代入直线AB的方程整理得y2+(∴x1=2,∴在ΔCAA1中,∴|CB||CA|∴S△BCFS△ACF点睛:与抛物线有关的问题,一般情况下都与抛物线的定义有关,特别是与焦点弦有关的问题更是这样,“看到准线想焦点,看到焦点想准线”,这是解决抛物线焦点弦有关问题的重要途径.由于抛物线的定义在运用上有较大的灵活性,因此此类问题也有一定的难度.10、A【解题分析】

对于找出反例即可判断,根据复数的性质可判断.【题目详解】若,则是0,为实数,即错误;

复数分为实数和虚数,而任意实数都可以比较大小,虚数是不可以比较大小的,即错误;

若,,则,但,即错误;故选:A【题目点拨】本题主要考查了复数的概念与性质,属于基础题.11、A【解题分析】

由题意知X~B(4,),根据二项分布的方差公式进行求解即可.【题目详解】∵每位同学能通过该测试的概率都是,且各人能否通过测试是相互独立的,∴X~B(4,),则X的方差D(X)=4(1)=1,故选A.【题目点拨】本题主要考查离散型随机变量的方差的计算,根据题意得到X~B(4,)是解决本题的关键.12、A【解题分析】

由已知求得函数的周期为4,可得f(11)=f(2+8)=f(2)=1.【题目详解】∵f(1+x)=f(1﹣x),∴f(﹣x)=f(2+x),又f(x)为定义在R上的奇函数,∴f(2+x)=﹣f(x),则f[2+(2+x)]=﹣f(2+x)=﹣[﹣f(x)]=f(x),即f(4+x)=f(x),∴f(x)为以4为周期的周期函数,由f(1+x)=f(1﹣x),得f(2)=f(1)=1,∴f(11)=f(2+8)=f(2)=1.故选:A.【题目点拨】本题考查函数的奇偶性与周期性的应用,考查数学转化思想方法,是中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

根据题中条件,设,表示出四边形的面积,由题意得到平面时,四棱锥体积最大,此时,根据四棱锥的体积公式,表示出,用导数的方法求其最值即可.【题目详解】在中,由已知,,,所以设,四边形的面积为,当平面时,四棱锥体积最大,此时,且,故四棱锥体积为,,时,;时,,所以,当时,.故答案为【题目点拨】本题主要考查求几何体的体积,熟记体积公式,以及导数的方法研究函数的最值即可,属于常考题型.14、【解题分析】

试题分析:由得,记为点;由得,记为点;由得,记为点.分别将A,B,C的坐标代入,得,,,所以的最小值为.【考点】简单的线性规划【名师点睛】利用线性规划求最值,一般用图解法求解,其步骤是:(1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解;(4)求最值:将最优解代入目标函数即可求出最大值或最小值.15、【解题分析】

根据条件可得,然后利用基本不等式求解即可.【题目详解】,,当且仅当,即时取等号,的最小值为.故答案为.【题目点拨】本题考查了基本不等式及其应用,关键掌握“1“的代换,属基础题.16、【解题分析】

首先画出正三棱柱,求出边长和,最后求面积.【题目详解】因为是正三棱柱,并且棱长都为1,是腰长为,底边长为1的等腰三角形,所以底边的高,.故答案为【题目点拨】本题考查几何体中几何量的求法,意在考查空间想象能力,属于基础题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ),0【解题分析】

试题分析:(Ⅰ)因为通过对函数求导可得,所以要求函数的单调递增区间即要满足,即解可得x的范围.本小题要处理好两个关键点:三角的化一公式;解三角不等式.(Ⅱ)因为由(Ⅰ)可得函数在上递增,又因为所以可得是单调增区间,是单调减区间.从而可求结论.试题解析:(Ⅰ)单调区间为(Ⅱ)由知(Ⅰ)知,是单调增区间,是单调减区间所以,考点:1.函数的导数解决单调性问题.2.区间限制的最值问题.3.解三角不等式.18、见证明【解题分析】试题分析:、证明因为a,b,c均为正数,由均值不等式得a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac,所以a2+b2+c2≥ab+bc+ac,①同理,②故.③所以原不等式成立.当且仅当a=b=c时,①式和②式等号成立;当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立.即当且仅当a=b=c=时,原式等号成立.考点:重要不等式点评:主要是考查了运用重要不等式进行放缩来证明不等式的方法,属于中档题.19、(1)有99%的把握认为发芽和种子型号有关(2)见解析【解题分析】

根据表格完成表格的填空并计算出做出判断的可能值为0,1,2,3分别计算出概率,然后计算期望【题目详解】(1)所以有99%的把握认为发芽和种子型号有关.(2)按分层抽样的方式抽到的20粒种子中,型号的种子共4粒,型号的种子共16粒,所以的可能值为0,1,2,3,,,,所以的分布列为.【题目点拨】本题考查了的计算和分布列与期望,只要将联表补充完整,按照计算方法即可求出,继而可以求出分布列与期望,较为基础。20、【解题分析】【试题分析】先分别确定命题“方程表示双曲线”中的的取值范围和“命题点在圆的内部”中的取值范围,再依据建立不等式组求解:解:因为方程,表示双曲线,故,所以或,因为点在圆的内部,故,解得:,所以,由为假命题,也为假命题知假、真,所以的取值范围为:.21、(I)见解析(II)【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论