




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省宿州市数学高二下期末达标测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知Y=5X+1,E(Y)=6,则E(X)的值为A.1 B.5 C.6 D.72.已知函数,则()A.函数的最大值为,其图象关于对称B.函数的最大值为2,其图象关于对称C.函数的最大值为,其图象关于直线对称D.函数的最大值为2,其图象关于直线对称3.已知命题,命题,则()A.命题是假命题 B.命题是真命题C.命题是真命题 D.命题是假命题4.抛掷一枚质地均匀的骰子两次,记事件A={两次的点数均为奇数},B={两次的点数之和小于7},则PBA.13 B.49 C.55.若函数在上是增函数,则实数的取值范围是()A. B. C. D.6.已知,,,则()A. B. C. D.7.从名男生和名女生中选出人去参加辩论比赛,人中既有男生又有女生的不同选法共有()A.种 B.种 C.种 D.种8.复数为虚数单位)的虚部为()A. B. C. D.9.已知函数的导函数为,满足,且,则不等式的解集为()A. B. C. D.10.利用数学归纳法证明“1+a+a2+…+an+1=,(a≠1,nN)”时,在验证n=1成立时,左边应该是()A.1 B.1+a C.1+a+a2 D.1+a+a2+a311.已知点在椭圆上,、分别是椭圆的左、右焦点,的中点在轴上,则等于()A. B. C. D.12.甲、乙两人独立地对同一目标各射击一次,其命中率分别为0.6,0.5,现已知目标被击中,则它是被甲击中的概率是()A.0.45 B.0.6 C.0.65 D.0.75二、填空题:本题共4小题,每小题5分,共20分。13.已知复数z和ω满足|z|-z=41-i,且ω14.若复数满足,其中为虚数单位,则__________.15.某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的6个点A、B、C、A1、、B1、C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有种(用数字作答).16.已知函数,若,则实数的取值范围为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面是矩形,平面,,是的中点.(1)求三棱锥的体积;(2)求异面直线和所成的角(结果用反三角函数值表示)18.(12分)已知函数的定义域为R,值域为,且对任意,都有,.(Ⅰ)求的值,并证明为奇函数;(Ⅱ)若时,,且,证明为R上的增函数,并解不等式.19.(12分)若函数,当时,函数有极值为.(1)求函数的解析式;(2)若有个解,求实数的取值范围.20.(12分)老师要从7道数学题中随机抽取3道考查学生,规定至少能做出2道即合格,某同学只会做其中的5道题.(I)求该同学合格的概率;(II)用X表示抽到的3道题中会做的题目数量,求X分布列及其期望.21.(12分)中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图如图所示,支持“延迟退休年龄政策”的人数与年龄的统计结果如表:年龄(岁)支持“延迟退休年龄政策”人数155152817(I)由以上统计数据填写下面的列联表;年龄低于45岁的人数年龄不低于45岁的人数总计支持不支持总计(II)通过计算判断是否有的把握认为以45岁为分界点的不同人群对“延迟退休年龄政策”的态度有差异.0.1000.0500.0100.0012.7063.8416.63510.828参考公式:22.(10分)已知函数.(1)当时,求不等式的解集;(2)设函数,当时,,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】分析:根据题意及结论得到E(X)=详解:Y=5X+1,E(Y)=6,则E(X)=故答案为A.点睛:这个题目考查的是期望的计算,两个变量如果满足线性关系,.2、D【解题分析】分析:由诱导公式化简函数,再根据三角函数图象与性质,即可逐一判断各选项.详解:由诱导公式得,,排除A,C.将代入,得,为函数图象的对称轴,排除B.故选D.点睛:本题考查诱导公式与余弦函数的图象与性质,考查利用余弦函数的性质综合分析判断的能力.3、C【解题分析】试题分析:先判断出命题p与q的真假,再由复合命题真假性的判断法则,即可得到正确结论.解:由于x=10时,x﹣2=8,lgx=lg10=1,故命题p为真命题,令x=0,则x2=0,故命题q为假命题,依据复合命题真假性的判断法则,得到命题p∨q是真命题,命题p∧q是假命题,¬q是真命题,进而得到命题p∧(¬q)是真命题,命题p∨(¬q)是真命题.故答案为C.考点:全称命题;复合命题的真假.4、D【解题分析】由题意得P(B|A)=P(AB)P(A),两次的点数均为奇数且和小于7的情况有(1,1),(1,3),(3,1),(1,5),(5,1)(3,3),则P(AB)=65、D【解题分析】
由题意得在上恒成立,利用分离参数思想即可得出结果.【题目详解】∵,∴,又∵函数在上是增函数,∴在恒成立,即恒成立,可得,故选D.【题目点拨】本题主要考查了已知函数的单调性求参数的取值范围,属于中档题.6、A【解题分析】
由指数函数及对数函数的性质比较大小,即可得出结论.【题目详解】故选:A.【题目点拨】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数和对数函数的性质的合理运用.7、C【解题分析】
在没有任何限制的情况下减去全是男生和全是女生的选法种数,可得出所求结果.【题目详解】全是男生的选法种数为种,全是女生的选法种数为种,因此,人中既有男生又有女生的不同选法为种,故选C.【题目点拨】本题考查排列组合问题,可以利用分类讨论来求解,本题的关键在于利用间接法来求解,可避免分类讨论,考查分析问题和解决问题的能力,属于中等题.8、B【解题分析】
由虚数的定义求解.【题目详解】复数的虚部是-1.故选:B.【题目点拨】本题考查复数的概念,掌握复数的概念是解题基础.9、A【解题分析】
令,这样原不等式可以转化为,构造新函数,求导,并结合已知条件,可以判断出的单调性,利用单调性,从而可以解得,也就可以求解出,得到答案.【题目详解】解:令,则,令,则,在上单调递增,,故选A.【题目点拨】本题考查了利用转化法、构造函数法、求导法解决不等式解集问题,考查了数学运算能力和推理论证能力.10、C【解题分析】考点:数学归纳法.分析:首先分析题目已知用数学归纳法证明:“1+a+a1+…+an+1=(a≠1)”在验证n=1时,左端计算所得的项.把n=1代入等式左边即可得到答案.解:用数学归纳法证明:“1+a+a1+…+an+1=(a≠1)”在验证n=1时,把当n=1代入,左端=1+a+a1.故选C.11、A【解题分析】由题意可得,设P,且,所以=,选A.【题目点拨】若,是椭圆的左、右焦点,且,则点P的坐标为.12、D【解题分析】根据题意,记甲击中目标为事件,乙击中目标为事件,目标被击中为事件,则.∴目标是被甲击中的概率是故选D.二、填空题:本题共4小题,每小题5分,共20分。13、1+i或-1-i【解题分析】
本题首先可以设z=a+bi(a,b∈R),由|z|-z=41-i,可得a=0、b=22,则【题目详解】设z=a+bi(a,b∈R),由|z|-z=4所以a2+b所以z=2i。令ω=m+ni(m,n∈R),由ω2=z,得所以2mn=2m2-n2所以ω=1+i或-1-i。故答案为:1+i或-1-i。【题目点拨】本题考查复数代数形式的乘除运算,考查复数相等的条件,是中档题。复数的运算,难点是乘除法法则,设z1则z1z114、【解题分析】分析:先设,再代入,利用复数相等的概念得到z,再求.详解:设,代入得所以,故答案为.点睛:(1)本题主要考查复数的计算和复数的模,考查复数相等的概念,意在考查学生对这些知识的掌握水平和基本的计算能力.(2)求复数z可以利用直接法和待定系数法,本题利用的是待定系数法.15、216【解题分析】
每种颜色的灯泡都至少用一个,即用了四种颜色的灯进行安装,分
3
步进行,第一步
,A
、B.
C
三点选三种颜色灯泡共有
种选法;第二步
,
在
A1
、
B1
、
C1
中选一个装第
4
种颜色的灯泡,有
3
种情况;第三步
,
为剩下的两个灯选颜色
,
假设剩下的为
B1
、
C1,
若
B1
与
A
同色
,
则
C1
只能选
B
点颜色;若
B1
与
C
同色
,
则
C1
有A.
B
处两种颜色可选,故为
B1
、
C1
选灯泡共有
3
种选法,得到剩下的两个灯有
3
种情况,则共有
×3×3=216
种方法.故答案为
21616、.【解题分析】
作出函数f(x)的图象,设f(a)=f(b)=t,根据否定,转化为关于t的函数,构造函数,求出函数的导数,利用导数研究函数的单调性和取值范围即可.【题目详解】作出函数f(x)的图象如图:设f(a)=f(b)=t,则0<t≤,∵a<b,∴a≤1,b>﹣1,则f(a)=ea=t,f(b)=2b﹣1=t,则a=lnt,b=(t+1),则a﹣2b=lnt﹣t﹣1,设g(t)=lnt﹣t﹣1,0<t≤,函数的导数g′(t)=﹣1=,则当0<t≤时g′(t)>0,此时函数g(t)为增函数,∴g(t)≤g()=ln﹣﹣1=﹣﹣2,即实数a﹣2b的取值范围为(﹣∞,﹣﹣2],故答案为:(﹣∞,﹣﹣2].【题目点拨】本题主要考查分段函数的应用,涉及函数与方程的关系,利用换元法转化为关于t的函数,构造函数,求函数的导数,利用导数研究函数的单调性和最值是解决本题的关键.综合性较强.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
(1)利用三棱锥的体积计算公式即可得出;(2)由于,可得或其补角为异面直线和所成的角,由平面,可得,再利用直角三角形的边角关系即可得出【题目详解】(1)平面,底面ABCD是矩形,高,,,,故(2),或其补角为异面直线和所成的角,又平面ABCD,,又,平面PAB,,于是在中,,,,异面直线和所成的角是【题目点拨】本题考查三棱锥体积公式的计算,异面直线所成的夹角,属于基础题18、(Ⅰ),见解析;(Ⅱ)解集为.【解题分析】
(Ⅰ)由题意令,求得,再利用函数的奇偶性的定义,即可判定函数的奇偶性;(Ⅱ)根据函数的单调性的定义,可判定函数为单调递增函数,再利用函数的单调性,把不等式得到,进而可求解不等式的解集。【题目详解】(Ⅰ)令,得.∵值域为,∴.∵的定义域为,∴的定义域为.又∵,∴,为奇函数.(Ⅱ)任取∵,∴,∵时,,∴,∴,又值域为,∴,∴.∴为上的增函数.,∵.又为R上的增函数,∴.故的解集为.【题目点拨】本题主要考查了函数奇偶性和单调性的判定,以及函数的基本性质的应用问题,其中解答中熟记函数的单调性和奇偶性的定义,以及利用函数的基本性质,合理转化不等式关系式是解答的关键,着重考查了学生分析问题和解答问题的能力,属于中档试题。19、(1);(2).【解题分析】
(1)求出函数的导数,利用函数在某个点取得极值的条件,得到方程组,求得的值,从而得到函数的解析式;(2)利用函数的单调性以及极值,通过有三个不等的实数解,求得的取值范围.【题目详解】(1)因为,所以,由时,函数有极值,得,即,解得所以;(2)由(1)知,所以,所以函数在上是增函数,在上是减函数,在上是增函数,当时,有极大值;当时,有极小值,因为关于的方程有三个不等实根,所以函数的图象与直线有三个交点,则的取值范围是.【题目点拨】该题考查的是有关应用导数研究函数的问题,涉及到的知识点有函数在极值点处的导数为0,利用条件求函数解析式,利用导数研究函数的单调性与极值,将方程根的个数转化为图象交点的个数来解决,属于中档题目.20、(1).(2)分布列见解析;.【解题分析】分析:(1)设“该同学成绩合格”为事件;(2)可能取的不同值为1,2,3,时,时,时.详解:(1)设“该同学成绩合格”为事件(2)解:可能取的不同值为1,2,3当时当时=当时=的分布列为123点睛:求解离散型随机变量的数学期望的一般步骤为:第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;第二步是“探求概率”,即利用排列组合、枚举法、概率公式,求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布则此随机变量的期望可直接利用这种典型分布的期望公式求得.21、(I)列联表见解析;(II)有.【解题分析】
(I)先根据频率分布直方图算出各数据,再结合支持“延迟退休年龄政策”的人数与年龄的统计结表求解;(II)算出观测值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水东一中的考试题目及答案
- 三下五除二考试题及答案
- 2025年环保技术固体废物资源化利用知识考察试题及答案解析
- 2025年自考专业(学前教育)学前教育心理学考试模拟题及答案4
- 《养老护理员》高级练习题+参考答案
- 肺囊肿感染防控策略-洞察与解读
- 用户隐私保护机制-第29篇-洞察与解读
- 2025年广东事业单位招聘考试综合类职业能力倾向测验真题模拟试卷
- 2025贵州黔东南州锦屏经济开发区环卫工人招聘考前自测高频考点模拟试题完整参考答案详解
- 2025年事业单位招聘考试综合类无领导小组讨论面试真题模拟试卷(山区与平原社会)
- 2025年全国“安全生产月活动”《安全知识》考前模拟题(含答案)
- 2025年黑龙江省齐齐哈尔市辅警考试题库(附答案)
- 2026福建三钢集团秋季校园招聘57人考试参考试题及答案解析
- 2025年镇江市中考英语试题卷(含答案及解析)
- 2025-2030固态电池产业技术创新路径与下游需求市场预测研究报告
- 福建成人高考考试题库及答案
- 济南生物考试题目及答案
- 2025年营养指导员考试模拟试题库(含答案)
- 2025西安市第五医院招聘(6人)考试参考试题及答案解析
- GB/T 10213-2025一次性使用医用橡胶检查手套
- 诗经采葛课件
评论
0/150
提交评论