2024届山东省泰安市长城中学数学高二下期末质量跟踪监视试题含解析_第1页
2024届山东省泰安市长城中学数学高二下期末质量跟踪监视试题含解析_第2页
2024届山东省泰安市长城中学数学高二下期末质量跟踪监视试题含解析_第3页
2024届山东省泰安市长城中学数学高二下期末质量跟踪监视试题含解析_第4页
2024届山东省泰安市长城中学数学高二下期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省泰安市长城中学数学高二下期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在等差数列中,如果,且,那么必有,类比该结论,在等比数列中,如果,且,那么必有()A. B.C. D.2.已知某几何体的三视图如下,根据图中标出的尺寸(单位:),可得这个几何体的体积是()A. B. C. D.3.给出四个函数,分别满足①;②;③;④,又给出四个函数图象正确的匹配方案是()A.①—丁②—乙③—丙④—甲B.①—乙②—丙③—甲④—丁C.①—丙②—甲③—乙④—丁D.①—丁②—甲③—乙④—丙4.双曲线的左焦点,过点作倾斜角为的直线与圆相交的弦长为,则椭圆C的离心率为()A. B. C. D.5.过抛物线的焦点F的直线交抛物线于A、B两点,若,则()A. B.1 C. D.26.设函数f(x)=,若函数f(x)的最大值为﹣1,则实数a的取值范围为()A.(﹣∞,﹣2) B.[2,+∞) C.(﹣∞,﹣1] D.(﹣∞,﹣2]7.已知圆与双曲线的渐近线相切,则的离心率为()A. B. C. D.8.某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段。下表为10名学生的预赛成绩,其中有些数据漏记了(见表中空白处)学生序号12345678910立定跳远(单位:米)1.961.681.821.801.601.761.741.721.921.7830秒跳绳(单位:次)63756062727063在这10名学生中进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则以下判断正确的为()A.4号学生一定进入30秒跳绳决赛B.5号学生一定进入30秒跳绳决赛C.9号学生一定进入30秒跳绳决赛D.10号学生一定进入30秒眺绳决赛9.盒中装有10个乒乓球,其中6个新球,4个旧球,不放回地依次取出2个球使用,在第一次取出新球的条件下,第二次也取到新球的概率为()A. B. C. D.10.若函数恰有个零点,则的取值范围为()A. B.C. D.11.函数在定义域内可导,的图象如图所示,则导函数可能为()A. B.C. D.12.已知随机变量Z服从正态分布N(0,),若P(Z>2)=0.023,则P(-2≤Z≤2)=A.0.477 B.0.625 C.0.954 D.0.977二、填空题:本题共4小题,每小题5分,共20分。13.设函数,,则函数的递减区间是________.14.已知双曲线:的右焦点到渐近线的距离为4,且在双曲线上到的距离为2的点有且仅有1个,则这个点到双曲线的左焦点的距离为______.15.直线与圆相交的弦长为__________.16.若,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)(1)化简:;(2)若、为锐角,且,,求的值.18.(12分)2018年至2020年,第六届全国文明城市创建工作即将开始.在2017年9月7日召开的攀枝花市创文工作推进会上,攀枝花市委明确提出“力保新一轮提名城市资格、确保2020年创建成功”的目标.为了确保创文工作,今年初市交警大队在辖区开展“机动车不礼让行人整治行动”.下表是我市一主干路口监控设备抓拍的5个月内“驾驶员不礼让斑马线”行为统计数据:月份违章驾驶员人数(Ⅰ)请利用所给数据求违章人数与月份之间的回归直线方程;(Ⅱ)预测该路口7月份不“礼让斑马线”违章驾驶员的人数;(Ⅲ)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查“驾驶员不礼让斑马线”行为与驾龄的关系,得到如下列联表:不礼让斑马线礼让斑马线合计驾龄不超过年驾龄年以上合计能否据此判断有97.5%的把握认为“礼让斑马线”行为与驾龄有关?19.(12分)已知二项式.(1)若展开式中第二项系数与第四项系数之比为1:8,求二项展开式的系数之和.(2)若展开式中只有第6项的二项式系数最大,求展开式中的常数项.20.(12分)袋中装有10个除颜色外完全一样的黑球和白球,已知从袋中任意摸出2个球,至少得到1个白球的概率是.(1)求白球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为X,求随机变量X的分布列.21.(12分)为了适应高考改革,某中学推行“创新课堂”教学.高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取20名学生的成绩进行统计分析,结果如表:(记成绩不低于120分者为“成绩优秀”)分数[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)[140,150]甲班频数1145432乙班频数0112664(1)由以上统计数据填写下面的2×2列联表,并判断是否有95%以上的把握认为“成绩优秀与教学方式有关”?甲班乙班总计成绩优秀成绩不优秀总计(2)现从上述样本“成绩不优秀”的学生中,抽取3人进行考核,记“成绩不优秀”的乙班人数为X,求X的分布列和期望.参考公式:,其中.临界值表P()0.1000.0500.0100.0012.7063.8416.63510.82822.(10分)已知定义域为R的函数f(x)=是奇函数,且a∈R.(1)求a的值;(2)设函数g(x)=,若将函数g(x)的图象向右平移一个单位得到函数h(x)的图象,求函数h(x)的值域.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】分析:结合等差数列与等比数列具有的类比性,且等差数列与和差有关,等比数列与积商有关的特点,即可类比得到结论.详解:由题意,类比上述性质:在等比数列中,则由“如果,且”,则必有“”成立,故选D.点睛:本题主要考查了等差数列与等比数列之间的类比推理,其中类比推理的一般步骤:①找出等差数列与等比数列之间的相似性或一致性;②用等差数列的性质取推测等比数列的性质,得到一个明确的结论(或猜想).2、C【解题分析】分析:由三视图知几何体是一个三棱锥,三棱锥的底面是一个边长为1,高为1的三角形,三棱锥的高为1,根据三棱锥的体积公式得到结果.详解:由三视图可知,几何体是一个三棱锥,三棱锥的底面是一个边长为,高为的三角形,面积,三棱锥的高是,所以故选C.点睛:当已知三视图去还原成几何体直观图时,首先根据三视图中关键点和视图形状确定几何体的形状,再根据投影关系和虚线明确内部结构,最后通过三视图验证几何体的正确性.3、D【解题分析】四个函数图象,分别对应甲指数函数,乙对数函数,丙幂函数,丁正比例函数;而满足①是正比例函数;②是指数函数;③是对数函数;④是幂函数,所以匹配方案是①—丁②—甲③—乙④—丙,选D。4、B【解题分析】

求出直线方程,利用过过点作倾斜角为的直线与圆相交的弦长为列出方程求解即可.【题目详解】双曲线的左焦点过点作倾斜角为的直线与圆相交的弦长为,可得:,可得:则双曲线的离心率为:故选:B.【题目点拨】本题考查双曲线的简单性质的应用,直线与圆的位置关系的应用,考查离心率的求法,考查计算能力.5、C【解题分析】

根据抛物线的定义,结合,求出A的坐标,然后求出AF的方程求出B点的横坐标即可得到结论.【题目详解】抛物线的焦点F(1,0),准线方程为,设A(x,y),则,故x=4,此时y=4,即A(4,4),则直线AF的方程为,即,代入得,解得x=4(舍)或,则,故选:C.【题目点拨】本题主要考查抛物线的弦长的计算,根据抛物线的定义是解决本题的关键.一般和抛物线有关的小题,可以应用结论来处理;平时练习时应多注意抛物线的结论的总结和应用。尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化。6、D【解题分析】

考虑x≥1时,f(x)递减,可得f(x)≤﹣1,当x<1时,由二次函数的单调性可得f(x)max=1+a,由题意可得1+a≤﹣1,可得a的范围.【题目详解】当x≥1时,f(x)=﹣log1(x+1)递减,可得f(x)≤f(1)=﹣1,当且仅当x=1时,f(x)取得最大值﹣1;当x<1时,f(x)=﹣(x+1)1+1+a,当x=﹣1时,f(x)取得最大值1+a,由题意可得1+a≤﹣1,解得a≤﹣1.故选:D.【题目点拨】本题考查分段函数的最值求法,注意运用对数函数和二次函数的单调性,考查运算能力,属于中档题.7、B【解题分析】

由题意可得双曲线的渐近线方程为,根据圆心到切线的距离等于半径,求出的关系,进而得到双曲线的离心率,得到答案.【题目详解】由题意,根据双曲线的渐近线方程为.根据圆的圆心到切线的距离等于半径1,可得,整理得,即,又由,则,可得即双曲线的离心率为.故选:B.【题目点拨】本题考查了双曲线的几何性质——离心率的求解,其中求双曲线的离心率(或范围),常见有两种方法:①求出,代入公式;②只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程,即可得的值(范围).8、D【解题分析】

先确定立定跳远决赛的学生,再讨论去掉两个的可能情况即得结果【题目详解】进入立定跳远决赛的学生是1,3,4,6,7,8,9,10号的8个学生,由同时进入两项决赛的有6人可知,1,3,4,6,7,8,9,10号有6个学生进入30秒跳绳决赛,在这8个学生的30秒跳绳决赛成绩中,3,6,7号学生的成绩依次排名为1,2,3名,1号和10号成绩相同,若1号和10号不进入30秒跳绳决赛,则4号肯定也不进入,这样同时进入立定跳远决赛和30秒跳绳决赛的只有5人,矛盾,所以1,3,6,7,10号学生必进入30秒跳绳决赛.选D.【题目点拨】本题考查合情推理,考查基本分析判断能力,属中档题.9、C【解题分析】试题分析:在第一次取出新球的条件下,盒子中还有9个球,这9个球中有5个新球和4个旧球,故第二次也取到新球的概率为考点:古典概型概率10、D【解题分析】

将问题转化为与恰有个交点;利用导数和二次函数性质可得到的图象,通过数形结合可确定或时满足题意,进而求得结果.【题目详解】令,则恰有个零点等价于与恰有个交点当时,,则当时,;当时,在上单调递减,在上单调递增当时,在上单调递减,在上单调递增可得图象如下图所示:若与有两个交点,则或又,即当时,恰有个零点本题正确选项:【题目点拨】本题考查根据函数零点个数求解参数范围的问题,关键是能够将问题转化为平行于轴的直线与曲线的交点个数的问题,利用数形结合的方式找到临界状态,从而得到满足题意的范围.11、D【解题分析】

根据函数的单调性判断出导函数函数值的符号,然后结合所给的四个选项进行分析、判断后可得正确的结论.【题目详解】由图象可知,函数在时是增函数,因此其导函数在时,有(即函数的图象在轴上方),因此排除A、C.从原函数图象上可以看出在区间上原函数是增函数,所以,在区间上原函数是减函数,所以;在区间上原函数是增函数,所以.所以可排除C.故选D.【题目点拨】解题时注意导函数的符号与函数单调性之间的关系,即函数递增(减)时导函数的符号大(小)于零,由此可判断出导函数图象与x轴的相对位置,从而得到导函数图象的大体形状.12、C【解题分析】因为随机变量服从正态分布,所以正态曲线关于直线对称,又,所以,所以0.954,故选C.【命题意图】本题考查正态分布的基础知识,掌握其基础知识是解答好本题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】,如图所示,其递减区间是.14、8【解题分析】

双曲线:的右焦点到渐近线的距离为4,可得的值,由条件以为圆心,2为半径的圆与双曲线仅有1个交点.由双曲线和该圆都是关于轴对称的,所以这个点只能是双曲线的右顶点.即,根据可求得答案.【题目详解】由题意可得双曲线的一条渐近线方程为,由焦点到渐近线的距离为4,即,即.双曲线上到的距离为2的点有且仅有1个,即以为圆心,2为半径的圆与双曲线仅有1个交点.由双曲线和该圆都是关于轴对称的,所以这个点只能是双曲线的右顶点.所以,又即,即,所以.所以双曲线的右顶点到左焦点的距离为.所以这个点到双曲线的左焦点的距离为8.故答案为:8【题目点拨】本题考查双曲线的性质,属于中档题.15、【解题分析】

将极坐标方程化为直角坐标系方程是常用方法.【题目详解】将直线化为普通方程为:,∵,∴,化为普通方程为:,即,联立得,解得,∴直线与圆相交的弦长为,故答案为.考点:简单曲线的极坐标方程.16、【解题分析】

利用组合数的性质公式可以得到两个方程,解方程即可求出的值.【题目详解】因为,所以有或.当时,,方程无实根;当时,,综上所述:故答案为:【题目点拨】本题考查了组合数的性质公式,考查了解方程的能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】

(1)利用诱导公式对代数式进行化简即可;(2)根据,得出、的取值范围,利用同角三角函数的基本关系计算出和,再利用两角差的余弦公式得出的值.【题目详解】(1);(2)因为、为锐角,且,,,,所以,,.【题目点拨】本题考查诱导公式化简,考查利用两角差的余弦公式求值,解题时要注意利用已知角去配凑未知角,在利用同角三角函数求值时,要考查角的象限或取值范围,考查计算能力,属于中等题.18、(1);(2)66;(3)有97.5%的把握认为“礼让斑马线”行为与驾龄有关.【解题分析】分析:(1)由表中数据知:,代入公式即可求得,,从而求得违章人数与月份之间的回归直线方程;(2)把代入回归直线方程即可;(3)求得观测值,从而即可得到答案.详解:(Ⅰ)由表中数据知:∴,,∴所求回归直线方程为.(Ⅱ)由(Ⅰ)知,令,则人,(Ⅲ)由表中数据得,根据统计有97.5%的把握认为“礼让斑马线”行为与驾龄有关.点睛:求回归方程,关键在于正确求出系数,,由于,的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误.(注意线性回归方程中一次项系数为,常数项为,这与一次函数的习惯表示不同.)19、(1)-1(2)180【解题分析】

(1)先求出的值,再求二项展开式的系数之和;(2)根据已知求出的值,再求出展开式中的常数项.【题目详解】(1)二项式的展开式的通项为,所以第二项系数为,第四项系数为,所以,所以.所以二项展开式的系数之和.(2)因为展开式中只有第6项的二项式系数最大,所以展开式有11项,所以令.所以常数项为.【题目点拨】本题主要考查二项式展开式的系数问题,考查指定项的求法,意在考查学生对这些知识的理解掌握水平.20、(1)5个;(2)见解析.【解题分析】

(1)设白球的个数为x,则黑球的个数为10﹣x,记“从袋中任意摸出2个球,至少得到1个白球”为事件A,则两个都是黑球与事件A为对立事

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论