




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南濮阳建业国际学校数学高二第二学期期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的图象如图所示,则函数的对称中心坐标为()A. B.C. D.2.曲线y=ex在A处的切线与直线x﹣y+1=0平行,则点A的坐标为()A.(﹣1,e﹣1) B.(0,1) C.(1,e) D.(0,2)3.已知中,若,则的值为()A.2 B.3 C.4 D.54.用数学归纳法证明不等式:,则从到时,左边应添加的项为()A. B.C. D.5.已知命题若实数满足,则或,,,则下列命题正确的是()A. B. C. D.6.已知-1,a,b,-5成等差数列,-1,c,-4成等比数列,则a+b+c=()A.-8 B.-6 C.-6或-4 D.-8或-47.关于函数的四个结论:的最大值为;函数的图象向右平移个单位长度后可得到函数的图象;的单调递增区间为,;图象的对称中心为其中正确的结论有()A.0个 B.1个 C.2个 D.3个8.将两枚骰子各掷一次,设事件{两个点数都不相同},{至少出现一个3点},则()A. B. C. D.9.某校1000名学生的某次数学考试成绩X服从正态分布,其密度函数曲线如图所示,正态变量X在区间,,内取值的概率分别是,,,则成绩X位于区间(52,68]的人数大约是()A.997B.954C.683D.34110.若集合,则集合()A. B.C. D.11.设等差数列的前项和为.若,,则A.9 B.8 C.7 D.212.以下说法中正确个数是()①用反证法证明命题“三角形的内角中至多有一个钝角”的反设是“三角形的三个内角中至少有一个钝角”;②欲证不等式成立,只需证;③用数学归纳法证明(,,在验证成立时,左边所得项为;④命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是使用了“三段论”,但小前提使用错误.A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设函数(,,为常数,且,,)的部分图象如图所示,则_____.14.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是__________.15.组合恒等式,可以利用“算两次”的方法来证明:分别求和的展开式中的系数.前者的展开式中的系数为;后者的展开式中的系数为.因为,则两个展开式中的系数也相等,即.请用“算两次”的方法化简下列式子:______.16.若函数在上单调递增,则的取值范围是________________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知实数为整数,函数,(1)求函数的单调区间;(2)如果存在,使得成立,试判断整数是否有最小值,若有,求出值;若无,请说明理由(注:为自然对数的底数).18.(12分)在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.(1)摸出的3个球为白球的概率是多少?(2)摸出的3个球为2个黄球1个白球的概率是多少?(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?19.(12分)已知复数.(I)若,求复数;(II)若复数在复平面内对应的点位于第一象限,求的取值范围.20.(12分)在平面直角坐标系中,曲线的参数方程为(其中为参数),以直角坐标系原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为,试求直线与曲线的交点的直角坐标.21.(12分)命题:函数的两个零点分别在区间和上;命题:函数有极值.若命题,为真命题的实数的取值集合分别记为,.(1)求集合,;(2)若命题“且”为假命题,求实数的取值范围.22.(10分)随着社会的进步与发展,中国的网民数量急剧增加.下表是中国从年网民人数及互联网普及率、手机网民人数(单位:亿)及手机网民普及率的相关数据.年份网民人数互联网普及率手机网民人数手机网民普及率2009201020112012201320142015201620172018(互联网普及率(网民人数/人口总数)×100%;手机网民普及率(手机网民人数/人口总数)×100%)(Ⅰ)从这十年中随机选取一年,求该年手机网民人数占网民总人数比值超过80%的概率;(Ⅱ)分别从网民人数超过6亿的年份中任选两年,记为手机网民普及率超过50%的年数,求的分布列及数学期望;(Ⅲ)若记年中国网民人数的方差为,手机网民人数的方差为,试判断与的大小关系.(只需写出结论)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
试题分析:由图象可知又,又,.,又,所以,由,得,则的对称中心坐标为.考点:1.三角函数的性质;2.三角函数图像的性质.【方法点睛】根据,的图象求解析式的步骤:1.首先确定振幅和周期,从而得到与;2.求的值时最好选用最值点求,峰点:,;谷点:,,也可用零点求,但要区分该零点是升零点,还是降零点,升零点(图象上升时与轴的交点):,;降零点(图象下降时与轴的交点):,.2、B【解题分析】
由题意结合导函数研究函数的性质即可确定点A的坐标.【题目详解】设点A的坐标为,,则函数在处切线的斜率为:,切线与直线x﹣y+1=0平行,则,解得:,切点坐标为,即.本题选择B选项.【题目点拨】本题主要考查导函数研究函数的切线,直线平行的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.3、A【解题分析】
根据利用二项展开式的通项公式、二项式系数的性质、以及,即可求得的值,得到答案.【题目详解】由题意,二项式,又由,所以,其中,由,可得:,即,即,解得,故选A.【题目点拨】本题主要考查了二项式定理的应用,二项展开式的通项公式,二项式系数的性质,其中解答中熟记二项展开式的通项及性质是解答的关键,着重考查了推理与运算能力,属于中档试题.4、D【解题分析】
将和式子表示出来,相减得到答案.【题目详解】时:时:观察知:应添加的项为答案选D【题目点拨】本题考查了数学归纳法,写出式子观察对应项是解题的关键.5、C【解题分析】由题意可知,p是真命题,q是假命题,则是真命题.本题选择C选项.6、D【解题分析】
根据等差数列的性质可得出a+b的值,利用等比中项的性质求出c的值,于此可得出a+b+c的值。【题目详解】由于-1、a、b、-5成等差数列,则a+b=-1又-1、c、-4成等比数列,则c2=-1当c=-2时,a+b+c=-8;当c=2时,a+b+c=-4,因此,a+b+c=-8或-4,故选:D。【题目点拨】本题考查等差数列和等比数列的性质,在处理等差数列和等比数列相关问题时,可以充分利用与下标相关的性质,可以简化计算,考查计算能力,属于中等题。7、B【解题分析】
把已知函数解析式变形,然后结合型函数的性质逐一核对四个命题得答案.【题目详解】函数的最大值为,故错误;函数的图象向右平移个单位长度后,得即得到函数的图象,故正确;由解得∴的单调递增区间为故错误;由,得图象的对称中心为,故错误.∴其中正确的结论有1个。故选:B.【题目点拨】本题考查命题的真假判断与应用,考查正弦型函数的性质,考查三角函数的平移变换,难度一般.8、A【解题分析】分析:利用条件概率求.详解:由题得所以故答案为:A.点睛:(1)本题主要考查条件概率,意在考查学生对该知识的掌握水平和分析推理计算能力.(2)条件概率的公式:,=.9、C【解题分析】分析:先由图得,再根据成绩X位于区间(52,68]的概率确定人数.详解:由图得因为,所以成绩X位于区间(52,68]的概率是,对应人数为选C.点睛:利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.10、D【解题分析】试题分析:解:所以选D.考点:集合的运算.11、C【解题分析】
利用等差数列的通项公式及前项和公式,求得和的值,即可求出.【题目详解】由,,,解得,,则,故选.【题目点拨】本题主要考查等差数列的通项公式及前项和公式的应用。12、B【解题分析】
①根据“至多有一个”的反设为“至少有两个”判断即可。②不等式两边平方,要看正负号,同为正不等式不变号,同为负不等式变号。③令代入左式即可判断。④整数并不属于大前提中的“有些有理数”【题目详解】命题“三角形的内角中至多有一个钝角”的反设是“三角形的三个内角中至少有两个钝角”;①错欲证不等式成立,因为,故只需证,②错(,,当时,左边所得项为;③正确命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题,推理错误的原因是使用了“三段论”,小前提使用错误.④正确综上所述:①②错③④正确故选B【题目点拨】本题考查推理论证,属于基础题。二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
由图像可以计算出,,的值,即可得到三角函数表达式,然后计算出结果【题目详解】由图可知:,由,得,从而.将点代入,得,即,又,所以,得.所以.【题目点拨】本题考查了由函数图像求三角函数的表达式,熟练掌握图像是解题关键,较为基础14、【解题分析】
利用侧面展开图是正方形得到圆柱的底面半径与高的关系后可得圆柱的表面积与侧面积之比.【题目详解】设正方形的边长为,圆柱的底面半径为,则,,所以圆柱的全面积为,故侧面积与全面积之比为,填.【题目点拨】圆柱的侧面展开图是矩形,其一边的长为母线长,另一边的长为底面圆的周长,利用这个关系可以得到展开前后不同的几何量之间的关系.15、【解题分析】
结合所给信息,构造,利用系数相等可求.【题目详解】因为,则两个展开式中的系数也相等,在中的系数为,而在中的系数为,所以可得.【题目点拨】本题主要考查二项式定理的应用,精准理解题目所给信息是求解关键,侧重考查数学抽象和数学建模的核心素养.16、【解题分析】
解方程得,再解不等式即得解.【题目详解】令,则,∴.又∵,在区间上单调递增,∴,∴.故答案为【题目点拨】本题主要考查三角函数的图像和性质,考查三角函数单调性的应用,意在考查学生对这些知识的理解掌握水平,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)函数的单调递减区间是,单调递增区间是(2)的最小值为1【解题分析】
(1)求导函数后,注意对分式分子实行有理化,注意利用平方差公式,然后分析单调性;(2)由可得不等式,通过构造函数证明函数的最值满足相应条件即可;分析函数时,注意极值点唯一的情况,其中导函数等于零的式子要注意代入化简.【题目详解】解:(1)已知,函数的定义域为,因此在区间上,在区间上,所以函数的单调递减区间是,单调递增区间是.(2)存在,,使得成立设,只要满足即可,易知在上单调递增,又,,,所以存在唯一的,使得,且当时,;当时,.所以在上单调递减,在上单调递增,,又,即,所以.所以,因为,所以,则,又.所以的最小值为1.【题目点拨】本题考查导数的综合运用,难度较难,也是高考必考的考点.对于极值点唯一的情况,一定要注意极值点处导函数等于零对应的表达式,这对于后面去计算函数的最值时去化简有直接用途.18、(3)3.35;(4)3.45;(4)3433.【解题分析】
(3)先列举出所有的事件共有43种结果,摸出的4个球为白球只有一种结果,根据概率公式得到要求的概率,本题应用列举来解,是一个好方法;(4)先列举出所有的事件共有43种结果,摸出的4个球为3个黄球4个白球从前面可以看出共有9种结果种结果,根据概率公式得到要求的概率;(4)先列举出所有的事件共有43种结果,根据摸得同一颜色的4个球,摊主送给摸球者5元钱;若摸得非同一颜色的4个球,摸球者付给摊主3元钱,算一下摸出的球是同一色球的概率,估计出结果.【题目详解】把4只黄色乒乓球标记为A、B、C,4只白色的乒乓球标记为3、4、4.从6个球中随机摸出4个的基本事件为:ABC、AB3、AB4、AB4、AC3、AC4、AC4、A34、A34、A44、BC3、BC4、BC4、B34、B34、B44、C34、C34、C44、344,共43个.(3)事件E={摸出的4个球为白球},事件E包含的基本事件有3个,即摸出344号4个球,P(E)==3.35.(4)事件F={摸出的4个球为4个黄球3个白球},事件F包含的基本事件有9个,P(F)==3.45.(4)事件G={摸出的4个球为同一颜色}={摸出的4个球为白球或摸出的4个球为黄球},P(G)==3.3,假定一天中有333人次摸奖,由摸出的4个球为同一颜色的概率可估计事件G发生有33次,不发生93次.则一天可赚,每月可赚3433元.考点:3.互斥事件的概率加法公式;4.概率的意义19、(1);(2).【解题分析】试题分析:(1)由题意计算可得,若,则,.(2)结合(1)的计算结果得到关于实数a的不等式,求解不等式可得的取值范围为.试题解析:(1),若,则,∴,∴.(2)若在复平面内对应的点位于第一象限,则且,解得,即的取值范围为.20、【解题分析】
将曲线C的参数方程化为普通方程,将直线的极坐标方程化为平面直角坐标方程,联立即可求得直线与曲线C的交点的直角坐标.【题目详解】将直线的极坐标方程化直角坐标系方程为将曲线的参数方程化为普通方程可得:,由得,解得或,又,所以,所以直线与曲线的交点的直角坐标为.【题目点拨】该题考查的是有关直线与曲线交点的平面直角坐标的求解问题,涉及到的知识点有参数方程向普通方程的转化,极坐标方程向平面直角坐标方程的转化,直线与曲线交点坐标的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 半永久纹眉的临床护理
- 2025签订租赁合同后的权利
- 陕西中考试卷答案及解析化学试题
- 肇庆市实验中学高中历史二:第课战后资本主义世界经济体系的形成(第课时)高效课堂教学设计
- 《前列腺增生导致的尿潴留护理策略》课件
- 棉花机械化生产效率提升考核试卷
- 化纤浆粕在医疗植入材料中的生物相容性考核试卷
- 电力设备在线振动监测考核试卷
- 空调器制冷性能稳定性研究考核试卷
- 毛发染整行业智能化生产与信息化管理考核试卷
- 财政局保密知识讲座
- 士兵军考模拟卷(化学)
- 大学军事理论课教程第三章军事思想第三节中国古代军事思想
- 小升初成语运用题有答案
- 王贵启-玉米田杂草发生发展及除草剂优解-合肥0728
- 电信全综合业务支撑维护工作经验交流材料
- 除尘系统和相关安全设施设备运行、维护及检修、维修管理制度
- 食品营养学(暨南大学)智慧树知到答案章节测试2023年
- 医院18项核心制度(2023年)
- 2023年广东省初中生物地理学业考试真题集合试卷及答案高清版
- 情绪管理课:认识情绪-心理健康教育课件
评论
0/150
提交评论