




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽亳州利辛金石中学2024届数学高二下期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若,则()A. B. C. D.2.某教师有相同的语文参考书本,相同的数学参考书本,从中取出本赠送给位学生,每位学生本,则不同的赠送方法共有()A.种 B.种 C.种 D.种3.若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…,a5为实数,则()A. B. C. D.4.如图阴影部分为曲边梯形,其曲线对应函数为,在长方形内随机投掷一颗黄豆,则它落在阴影部分的概率是()A. B. C. D.5.设是定义在上的奇函数,且,当时,有恒成立,则不等式的解集是()A.∪B.∪C.∪D.∪6.下列不等式中正确的有()①;②;③A.①③ B.①②③ C.② D.①②7.已知为椭圆M:+=1和双曲线N:-=1的公共焦点,为它们的一个公共点,且,那么椭圆M和双曲线N的离心率之积为()A. B.1 C. D.8.设,且,则的最小值为()A. B.9 C.10 D.09.已知双曲线的右焦点为F2,若C的左支上存在点M,使得直线bx﹣ay=0是线段MF2的垂直平分线,则C的离心率为()A. B.2 C. D.510.设是一个三次函数,为其导函数.图中所示的是的图像的一部分.则的极大值与极小值分别是().A.与 B.与 C.与 D.与11.若1a<1bA.a2<b2 B.ab<12.如图所示,给出了样本容量均为7的A、B两组样本数据的散点图,已知A组样本数据的相关系数为r1,B组数据的相关系数为r2,则()A.r1=r2 B.r1<r2 C.r1>r2 D.无法判定二、填空题:本题共4小题,每小题5分,共20分。13.为了了解学校(共三个年级)的数学学习情况,教导处计算高一、高二、高三三个年级的平均成绩分别为,并进行数据分析,其中三个年级数学平均成绩的标准差为____________.14.在正项等比数列中,,则公比__________.15.“杨辉三角”是我国数学史上的一个伟大成就,是二项式系数在三角形中的一种几何排列.如图所示,去除所有为1的项,依此构成数列2,3,3,4,6,4,5,10,10,5,…,则此数列的前46项和为_____.16.正四面体的所有棱长都为2,则它的体积为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知命题:“曲线表示焦点在轴上的椭圆”,命题:不等式对于任意恒成立.(1)若命题为真命题,求实数的取值范围;(2)若命题为真,为假,求实数的取值范围.18.(12分)[选修4-5:不等式选讲]已知函数.(1)解不等式:;(2)对任意,恒成立,求实数的取值范围.19.(12分)已知椭圆的离心率为,抛物线与椭圆在第一线象限的交点为.(1)求曲线、的方程;(2)在抛物线上任取一点,在点处作抛物线的切线,若椭圆上存在两点关于直线对称,求点的纵坐标的取值范围.20.(12分)如图(1).在中,,,,、分别是、上的点,且,将沿折起到的位置,使,如图(2).(1)求证:平面;(2)当点在何处时,三棱锥体积最大,并求出最大值;(3)当三棱锥体积最大时,求与平面所成角的大小.21.(12分)某周末,郑州方特梦幻王国汇聚了八方来客.面对该园区内相邻的两个主题公园“千古蝶恋”和“西游传说”,成年人和未成年人选择游玩的意向会有所不同.某统计机构对园区内的100位游客(这些游客只在两个主题公园中二选一)进行了问卷调查.调查结果显示,在被调查的50位成年人中,只有10人选择“西游传说”,而选择“西游传说”的未成年人有20人.(1)根据题意,请将下面的列联表填写完整;选择“西游传说”选择“千古蝶恋”总计成年人未成年人总计(2)根据列联表的数据,判断是否有的把握认为选择哪个主题公园与年龄有关.附参考公式与表:().0.1000.0500.0250.0100.0012.7063.8415.0246.63510.82822.(10分)某学校研究性学习小组调查学生使用智能手机对学习成绩的影响,部分统计数据如下表:使用智能手机不使用智能手机总计学习成绩优秀4812学习成绩不优秀16218总计201030(Ⅰ)根据以上列联表判断,能否在犯错误的概率不超过0.005的前提下认为使用智能手机对学习成绩有影响?(Ⅱ)从学习成绩优秀的12名同学中,随机抽取2名同学,求抽到不使用智能手机的人数的分布列及数学期望.参考公式:,其中参考数据:0.050,。0250.0100.0050.0013.8415.0246.6357.87910.828
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
结合函数、不等式及绝对值含义判断即可【题目详解】对,若,则,但推不出,故错;对,若,设,则函数为增函数,则,故错;对,若,但推不出,故错误;对,设,则函数为增函数,当时,,则,故正确;故选:D【题目点拨】本题考查由指数、对数、幂函数及绝对值的含义比大小,属于基础题2、B【解题分析】若本中有本语文和本数学参考,则有种方法,若本中有本语文和本参考,则有种方法,若本中有语文和本参考,则有种方法,若本都是数学参考书,则有一种方法,所以不同的赠送方法共有有,故选B.3、B【解题分析】分析:由题意可知,,然后利用二项式定理进行展开,使之与进行比较,可得结果详解:由题可知:而则故选点睛:本题主要考查了二次项系数的性质,根据题目意思,将转化为是本题关键,然后运用二项式定理展开求出结果4、D【解题分析】
通过定积分可求出空白部分面积,于是利用几何概型公式可得答案.【题目详解】由题可知长方形面积为3,而长方形空白部分面积为:,故所求概率为,故选D.【题目点拨】本题主要考查定积分求几何面积,几何概型的运算,难度中等.5、B【解题分析】试题分析:因为当时,有恒成立,所以恒成立,所以在内单调递减.因为,所以在内恒有;在内恒有.又因为是定义在上的奇函数,所以在内恒有;在内恒有.又因为不等式的解集,即不等式的解集,由上分析可得,其解集为∪,故应选.考点:1、函数的基本性质;2、导数在研究函数的单调性中的应用.【思路点睛】本题主要考查了函数的基本性质和导数在研究函数的单调性中的应用,属中档题.其解题的一般思路为:首先根据商函数求导法则可知化为;然后利用导数的正负性可判断函数在内的单调性;再由可得函数在内的正负性;最后结合奇函数的图像特征可得,函数在内的正负性,即可得出所求的解集.6、B【解题分析】
逐一对每个选项进行判断,得到答案.【题目详解】①,设函数,递减,,即,正确②,设函数,在递增,在递减,,即,正确③,由②知,设函数,在递减,在递增,,即正确答案为B【题目点拨】本题考查了利用导函数求函数的单调性进而求最值来判断不等式关系,意在考查学生的计算能力.7、B【解题分析】
根据题意得到,根据勾股定理得到,计算得到答案.【题目详解】为椭圆M:+=1和双曲线N:-=1的公共焦点故,故,故即故选:【题目点拨】本题考查了椭圆和双曲线的离心率,意在考查学生的计算能力.8、B【解题分析】
利用柯西不等式得出最小值.【题目详解】(x2)(y2)≥(x)2=1.当且仅当xy即xy=时取等号.故选:B.【题目点拨】本题考查了柯西不等式的应用,熟记不等式准确计算是关键,属于基础题.9、C【解题分析】
设P为直线与的交点,则OP为的中位线,求得到渐近线的距离为b,运用中位线定理和双曲线的定义,以及离心率的公式,计算可得所求值.【题目详解】,直线是线段的垂直平分线,可得到渐近线的距离为,且,,,可得,即为,即,可得.故选C.【题目点拨】本题考查双曲线的定义、方程和性质,考查三角形的中位线定理,考查方程思想和运算能力,属于中档题.10、C【解题分析】
易知,有三个零点因为为二次函数,所以,它有两个零点由图像易知,当时,;当时,,故是极小值类似地可知,是极大值.故答案为:C11、D【解题分析】
不妨令a=-1,b=-2【题目详解】由题1a<1b<0,不妨令a=-1,b=-2,可得a2<ba-b=-1【题目点拨】本题主要考查不等式与不等关系,利用特殊值代入法,排除不符合条件的选项,是一种简单有效的方法,属于基础题12、C【解题分析】
利用“散点图越接近某一条直线线性相关性越强,相关系数的绝对值越大”判断即可.【题目详解】根据两组样本数据的散点图知,组样本数据几乎在一条直线上,且成正相关,∴相关系数为应最接近1,组数据分散在一条直线附近,也成正相关,∴相关系数为,满足,即,故选C.【题目点拨】本题主要考查散点图与线性相关的的关系,属于中档题.判断线性相关的主要方法:(1)散点图(越接近直线,相关性越强);(2)相关系数(绝对值越大,相关性越强).二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
根据方差公式计算方差,然后再得标准差.【题目详解】三个数的平均值为115,方差为,∴标准差为.故答案为:.【题目点拨】本题考查标准差,注意到方差是标准差的平方,因此可先计算方差.方差公式为:数据的方差为.14、【解题分析】分析:利用等比数列的通项公式把等式改写成含有和的式子,联立方程组求解即可.详解:由题意得:,两式相除消去并求解得:,,.故答案为:.点睛:等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”,通过列方程(组)可迎刃而解.15、【解题分析】
根据“杨辉三角”的特点可知次二项式的二项式系数对应“杨辉三角”中的第行,从而得到第行去掉所有为的项的各项之和为:;根据每一行去掉所有为的项的数字个数成等差数列的特点可求得至第行结束,数列共有项,则第项为,从而加和可得结果.【题目详解】由题意可知,次二项式的二项式系数对应“杨辉三角”中的第行则“杨辉三角”第行各项之和为:第行去掉所有为的项的各项之和为:从第行开始每一行去掉所有为的项的数字个数为:则:,即至第行结束,数列共有项第项为第行第个不为的数,即为:前项的和为:本题正确结果:【题目点拨】本题考查数列求和的知识,关键是能够根据“杨辉三角”的特征,结合二项式定理、等差等比数列求和的方法来进行转化求解,对于学生分析问题和总结归纳的能力有一定的要求,属于较难题.16、.【解题分析】试题分析:过作,则是的中心,连接,则,,在中,,所以.考点:多面体的体积.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).【解题分析】
(1)由命题得命题由命题为真,得为真命题或为真命题,列m的不等式求解即可;(2)由命题为真,为假判断均为真命题或均为假命题,分情况列出m的不等式组求解即可.【题目详解】,(1)由于为真命题,故为真命题或为真命题,从而有或,即.(2)由于为真命题,为假命题,所以均为真命题或均为假命题,从而有或,解得即:.【题目点拨】本题考查命题真假,注意命题p焦点在y轴上审题要注意,对于命题p,q的真假判断要准确.18、(1);(2).【解题分析】分析:(1)解法一:写出分段函数的解析式,讨论的范围,求出分段函数不同自变量范围的不等式的解,再求这些解的并集即可.解法二:写出分段函数的解析式,绘制函数图象,计算函数与的交点坐标,根据函数图象确定不等式的解.解法三:根据绝对值在数轴上的几何意义,确定不等式的解.(2)将恒成立问题转化成问题,确定后,解关于的一元二次不等式,即可求出实数的取值范围.解法一:根据三角不等式,确定函数最小值解法二:根据函数图象,确定函数最小值.详解:(1)解法一:当时,,解得:;当时,,解得:;当时,,解得:,所以不等式的解集为;(1)解法二:令,两个函数的图象如图所示:由图像可知,两函数图象的交点为和,所以不等式即的解集为(注:如果作出函数的图象,写出的解集,可参照解法2的标准给分)解法三:如图,设数轴上与对应的点分别是,那么两点的距离是4,因此区间上的数都是原不等式的解.先在数轴上找出与点的距离之和为的点,将点向左移动2个单位到点,这时有,同理,将点向右移动2个单位到点,这时也有,从数轴上可以看到,点与之间的任何点到点的距离之和都小于8,点的左边或点的右边的任何点到点的距离之和都大于8,所以,原不等式的解集是(2)解法一:,当时“”成立,又任意,恒成立,∴,即,解得:,∴的取值范围为.解法二:作函数的图象如图:由图象可知,函数的最小值为4,(注:如果第(1)问用解法2,可直接由(1)得最小值为4,不必重复说明)又任意,恒成立,∴,即,解得:,∴的取值范围为.点睛:本题考查了绝对值不等式问题,考查绝对值的性质和不等式恒成立问题的求解方法.函绝对值的不等式的解法:(1)定义法;即利用去掉绝对值再解(2)零点分段法:通常适用于含有两个及两个以上的绝对值符号的不等式;(3)平方法:通常适用于两端均为非负实数时(比如);(4)图象法或数形结合法;(5)不等式同解变形原理.19、(1),(2)【解题分析】
(1)根据离心率可得,再将点分别代入两个曲线,求得曲线方程;(2)首先设,根据导数的几何意义求切线的方程,设椭圆上关于l对称的两点为,,那么设直线的方程,,转化为直线与椭圆有交点,并且的中点落在切线上的问题,最后根据,求得的范围.【题目详解】解:(1)由已知得:,所以.把代入椭圆,解得,所以,得椭圆.把代入抛物线得,所以抛物线.(2)设点,抛物线,所以,所以切线.设椭圆上关于l对称的两点为,.(1)当时,设直线.代入椭圆得:.,化简得.……(*),所以MN的中点Q的横坐标,纵坐标.要使M,N关于直线l对称,则点Q在直线l上,即,化简得:,代入(*)式解得.(2)当时,显然满足要求.综上所述:,所以点P的纵坐标的取值范围是.【题目点拨】本题考查了求曲线方程,以及直线与圆锥曲线的位置关系的问题,考查了转化与化归,以及计算能力,属于中档题型.20、(1)见解析(2)点位于中点时,三棱锥体积最大,最大值为(3)【解题分析】
(1)根据线面垂直的判定定理证明;(2)将三棱锥的体积表示成某个变量的函数,再求其最大值;(3)先找出线面角的平面角,再解三角形求角.【题目详解】(1)证明
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 609:2025 EN Coal and coke - Determination of carbon and hydrogen - High temperature combustion method
- 义务教育课程标准解读与思考
- 电力负荷控制员练习题库与参考答案解析
- 12月病理学模拟试题(含参考答案解析)
- 木材化学成分在生物医学工程中的应用考核试卷
- 纺织品的绿色染整工艺创新考核试卷
- 肥料制造的农田耕作与机械化作业考核试卷
- 2025年中子、电子及Γ辐照装置合作协议书
- 认证认可ISO设施管理体系考核试卷
- 四个精某著名企业激励故事
- 家长讲堂:法制主题教育
- 肿瘤科进修心得体会护理
- 第五单元 生物与环境 大单元教学设计-2023-2024学年科学四年级下册苏教版
- 生长激素在临床中的应用
- 武汉市2025届高中毕业生二月调模拟卷试题
- 卫生监督信息员培训课件
- 杜邦分析法公式
- 五年级下册劳动《编花篮》课件
- 贵州省2025届高考英语二模试卷含解析
- 2024年公务员考试申论课件:全面掌握答题技巧
- 2024年大唐集团招聘笔试试题及答案-
评论
0/150
提交评论