湖北省天门、仙桃、潜江2024届数学高二下期末质量跟踪监视试题含解析_第1页
湖北省天门、仙桃、潜江2024届数学高二下期末质量跟踪监视试题含解析_第2页
湖北省天门、仙桃、潜江2024届数学高二下期末质量跟踪监视试题含解析_第3页
湖北省天门、仙桃、潜江2024届数学高二下期末质量跟踪监视试题含解析_第4页
湖北省天门、仙桃、潜江2024届数学高二下期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省天门、仙桃、潜江2024届数学高二下期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.被称为宋元数学四大家的南宋数学家秦九韶在《数书九章》一书中记载了求解三角形面积的公式,如图是利用该公式设计的程序框图,则输出的的值为()A.4 B.5 C.6 D.72.已知关于的方程的两根之和等于两根之积的一半,则一定是()A.直角三角形 B.等腰三角形 C.钝角三角形 D.等边三角形3.已知,且,则a=()A.﹣1 B.2或﹣1 C.2 D.﹣24.的展开式中,的系数为()A.-10 B.-5 C.5 D.05.已知线性回归方程相应于点的残差为,则的值为()A.1 B.2 C. D.6.已知集合,则()A. B.C. D.7.某科研机构为了研究中年人秃头是否与患有心脏病有关,随机调查了一些中年人的情况,具体数据如下表所示:有心脏病无心脏病秃发20300不秃发5450根据表中数据得,由断定秃发与患有心脏病有关,那么这种判断出错的可能性为()附表:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828A.0.1 B.0.05C.0.01 D.0.0018.幂函数y=kxa过点(4,2),则k–a的值为A.–1 B.C.1 D.9.设随机变量服从分布,且,,则()A., B.,C., D.,10.函数f(x)=x3-x2+mx+1不是R上的单调函数,则实数m的取值范围是()A. B.C. D.11.现有张不同的卡片,其中红色、黄色、蓝色、绿色卡片各张.从中任取张,要求这张卡片不能是同一种颜色,且红色卡片至多张.不同取法的种数为A. B. C. D.12.已知变量,满足约束条件,则目标函数的最大值为A.7 B.8 C.9 D.10二、填空题:本题共4小题,每小题5分,共20分。13.某同学在研究函数时,给出下列结论:①对任意成立;②函数的值域是;③若,则一定有;④函数在上有三个零点.则正确结论的序号是_______.14.若函数在区间上为单调增函数,则的取值范围是__________.15.不等式的解集为_______.16.某校从7名教师中选派4名同时去4个边远地区支教(每地1名教师),其中甲和乙不能都去,甲和丙只能都去或都不去,则不同的选派方案共有____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(1)化简:;(2)已知:,求的表达式;(3),请用数学归纳法证明不等式.18.(12分)某投资公司对以下两个项目进行前期市场调研:项目:通信设备.根据调研,投资到该项目上,所有可能结果为:获利、损失、不赔不赚,且这三种情况发生的概率分别为;项目:新能源汽车.根据调研,投资到该项目上,所有可能结果为:获利、亏损,且这两种情况发生的概率分别为.经测算,当投入两个项目的资金相等时,它们所获得的平均收益(即数学期望)也相等.(1)求的值;(2)若将万元全部投到其中的一个项目,请你从投资回报稳定性考虑,为投资公司选择一个合理的项目,并说明理由.19.(12分)如图,在四棱锥E﹣ABCD中,底面ABCD是边长为2的正方形,且DE=,平面ABCD⊥平面ADE,∠ADE=30°(1)求证:AE⊥平面CDE;(2)求AB与平面BCE所成角的正弦值.20.(12分)已知函数,().(1)当时,求的单调区间;(2)设点,是函数图象的不同两点,其中,,是否存在实数,使得,且函数在点切线的斜率为,若存在,请求出的范围;若不存在,请说明理由.21.(12分)某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数01234保费设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数01234概率0.300.150.200.200.100.05(1)求一续保人本年度的保费高于基本保费的概率;(2)已知一续保人本年度的保费高于基本保费,求其保费比基本保费高出的概率.22.(10分)已知函数,为实数.(1)当时,求函数在点处的切线方程;(2)当,且恒成立时,求的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

模拟程序运行,依次计算可得所求结果【题目详解】当,,时,,;当,,时,,;当,,时,,;当,,时,,;故选B【题目点拨】本题考查程序运算的结果,考查运算能力,需注意所在位置2、B【解题分析】分析:根据题意利用韦达定理列出关系式,利用两角和与差的余弦函数公式化简得到A=B,即可确定出三角形形状.详解:设已知方程的两根分别为x1,x2,根据韦达定理得:x1+x2=cosAcosB,x1x2=2sin2=1﹣cosC,∵x1+x2=x1x2,∴2cosAcosB=1﹣cosC,∵A+B+C=π,∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB,∴cosAcosB+sinAsinB=1,即cos(A﹣B)=1,∴A﹣B=0,即A=B,∴△ABC为等腰三角形.故选B.点睛:此题考查了三角形的形状判断,涉及的知识有:根与系数的关系,两角和与差的余弦函数公式,以及二倍角的余弦函数公式,熟练掌握公式是解本题的关键.3、B【解题分析】

根据,可得,即可求解,得到答案.【题目详解】由题意,,且,则,解得或,故选B.【题目点拨】本题主要考查了共线向量的坐标表示及应用,其中解答中熟记共线向量的概念以及坐标表示是解答的关键,着重考查了推理与计算能力,属于基础题.4、B【解题分析】

在的二项展开式的通项公式中,令x的幂指数分别等于2和1,求出r的值,得到含与的项,再与、与-1对应相乘即可求得展开式中x的系数.【题目详解】要求的系数,则的展开式中项与相乘,项与-1相乘,的展开式中项为,与相乘得到,的展开式中项为,与-1相乘得到,所以的系数为.故选B.【题目点拨】本题主要考查二项式定理的应用,二项展开式的通项公式及特定项的系数,属于基础题.5、B【解题分析】

根据线性回归方程估计y,再根据残差定义列方程,解得结果【题目详解】因为相对于点的残差为,所以,所以,解得,故选B【题目点拨】本题考查利用线性回归方程估值以及残差概念,考查基本分析求解能力,属基础题.6、D【解题分析】,所以,故选B.7、D【解题分析】

根据观测值K2,对照临界值得出结论.【题目详解】由题意,,根据附表可得判断秃发与患有心脏病有关出错的可能性为.故选D.【题目点拨】本题考查了独立性检验的应用问题,理解临界值表格是关键,是基础题.8、B【解题分析】

先根据幂函数的定义得到k=1,再根据幂函数y=kxa过点(4,2)求出a的值,即得k–a的值.【题目详解】∵幂函数y=kxa过点(4,2),∴2=k×4a,且k=1,解得k=1,a=,∴k–a=1–.故选B.【题目点拨】本题主要考查幂函数的概念和解析式的求法,考查幂函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.9、A【解题分析】分析:根据随机变量符合二项分布,根据二项分布的期望和方差公式得到关于的方程组,注意两个方程之间的关系,把一个代入另一个,以整体思想来解决,求出P的值,再求出n的值,得到结果.详解:随机变量服从分布,且,,①②即可求得,.故选:A点睛:本题考查离散型随机变量的期望和方差,考查二项分布的期望和方差公式,考查方差思想,是一个比较好的题目,技巧性比较强.10、C【解题分析】

求出导函数,转化为有两个不同的实数根即可求解.【题目详解】因为f(x)=x3-x2+mx+1,所以,又因为函数f(x)=x3-x2+mx+1不是R上的单调函数,所以有两个不同的实数解,可得,即实数m的取值范围是,故选:C.【题目点拨】本题主要考查利用导数研究函数的单调性,考查了转化思想的应用,属于基础题.转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本题将单调性问题转化为方程问题是解题的关键11、C【解题分析】试题分析:3张卡片不能是同一种颜色,有两种情形:三种颜色或者两种颜色,如果是三种颜色,取法数为,如果是两种颜色,取法数为,所以取法总数为,故选C.考点:分类加法原理与分步乘法原理.【名师点晴】(1)对于一些比较复杂的既要运用分类加法计数原理又要运用分步乘法计数原理的问题,我们可以恰当地画出示意图或列出表格,使问题更加直观、清晰.(2)当两个原理混合使用时,一般是先分类,在每类方法里再分步.12、C【解题分析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数即可得答案.【题目详解】作出可行域如图,联立,解得,化目标函数为,由图可知,当直线过时,有最大值为9,故选.【题目点拨】本题主要考查简单的线性规划问题的解法。二、填空题:本题共4小题,每小题5分,共20分。13、①②③【解题分析】

由奇偶性判断①,结合①对,,三种情况讨论求值域,判断②,由单调性判断③,由③可知的图像与函数的图像只有两个交点,进而判断④,从而得出答案。【题目详解】①,即,故正确;②当时,,由①可知当时,,当时,,所以函数的值域是,正确;③当时,,由反比例函数的单调性可知,在上是增函数,由①可知在上也是增函数,所以若,则一定有,正确;④由③可知的图像与函数的图像只有两个交点,故错误。综上正确结论的序号是①②③【题目点拨】本题考查函数的基本性质,包括奇偶性,单调性,值域等,属于一般题。14、[1,+∞)【解题分析】函数在区间上为单调增函数等价于导函数在此区间恒大于等于0,故15、【解题分析】

原不等式等价于,解之即可.【题目详解】原不等式等价于,解得或.所以不等式的解集为【题目点拨】本题考查分式不等式的解法,属基础题.16、264【解题分析】根据题意,分两步进行,第一步,先选四名老师,又分两类:①甲去,则丙一定去,乙一定不去,有种不同选法,②甲不去,则丙一定不去,乙可能去也可能不去,有种不同选法,则不同的选法有6+5=11种第二步,四名老师去4个边远地区支教,有最后,由分步计数原理,可得共有11×24=264种方法.点睛:(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)证明见解析.【解题分析】

(1)利用组合数公式化简后可得出结果;(2)由(1)得出,令可得,化简得出,代入函数的解析式,利用二项式定理进行化简得出,于此可得出的表达式;(3)先由(2)中的结论,结合组合数的性质得出,然后再用数学归纳法证明出不等式成立即可.【题目详解】(1);(2)由(1)得,令可得,即,所以,,因此,;(3),所以,,即,①,②①②得,,下面用数学归纳法证明.(i)当时,则有,结论成立;(ii)假设当时,,那么当时,,所以当时,结论也成立.根据(i)(ii)恒成立.【题目点拨】本题考查组合数的性质与计算、以及二项式定理的逆向应用,同时也考查了利用数学归纳法证明数列不等式,证明时要适当利用放缩法进行证明,考查推理能力,综合性较强,属于难题.18、(1),,;(2)从风险控制角度,建议该投资公司选择项目.【解题分析】

(1)根据概率和为1列方程求得的值,再利用分布列和数学期望列方程组求得、的值;(2)计算均值与方差,比较即可得出结论.【题目详解】(1)依题意,,,设投入到项目的资金都为万元,变量和分别表示投资项目和所获得的利润,则和的分布列分别为由分布列得,,因为所以,即,又,解得,;,,(2)当投入万元资金时,由(1)知,所以,,,因为,说明虽然项目和项目的平均收益相等,但项目更稳妥,所以,从风险控制角度,建议该投资公司选择项目.【题目点拨】本题主要考查了离散型随机变量的分布列与数学期望和方差的计算问题,是中档题.19、(1)详见解析;(2).【解题分析】

(1)根据线面垂直的判定定理,可直接得出结论成立;(2)以为原点,直线,分别为轴,过点作与直线平行的直线为轴,建立空间直角坐标系,分别求出直线的方向向量与平面的法向量,根据向量夹角的余弦值,即可求出结果.【题目详解】解:(1)证明:平面平面,交线为,且平面,从而,又,由余弦定理得,即又,平面.(2)以为原点,直线,分别为轴,过点作与直线平行的直线为轴,建立空间直角坐标系.则,,设,,,所以平面BCE的法向量与平面所成角的正弦弦值【题目点拨】本题主要考查线面垂直的判定,以及空间向量的方法求线面角,熟记线面垂直的判定定理,以及空间向量的方法求解,即可得出结果.20、(1)的增区间为,减区间为;(2)存在实数取值范围是.【解题分析】

(1)分别研究,两种情况,先对函数求导,利用导数的方法判断其单调性,即可得出结果;(2)先由题意,得到,再根据,得到,得出,再由导数的几何意义,结合题中条件,得到,构造函数,用导数的方法研究函数的单调性,进而可得出结果.【题目详解】(1)当时,,令得,令得.当时,,所以在上是增函数。所以当时,的增区间为,减区间为;(2)由题意可得:,,所以,,令,则在单调递增,单调递减,,当时,,所以存在实数取值范围是.【题目点拨】本题主要考查导数的应用,通常需要对函数求导,用导数的方法研究单调性,最值等,属于常考题型.21、(1)0.55(2)【解题分析】分析:(1)将保费高于基本保费转化为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论