




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省许昌平顶山高二数学第二学期期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知(为虚数单位),则A. B. C. D.2.用数学归纳法证明等式时,第一步验证时,左边应取的项是()A.1 B. C. D.3.已知圆,在圆中任取一点,则点的横坐标小于的概率为()A. B. C. D.以上都不对4.如图,一环形花坛分成四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为()A.96 B.84 C.60 D.485.已知的边,的长分别为20,18,,则的角平分线的长为()A. B. C. D.6.命题p:∃x∈Ν,x3<x2;命题q:∀a∈0,1A.p假q真 B.p真q假C.p假q假 D.p真q真7.是第四象限角,,,则()A. B. C. D.8.定义在(0,+∞)上的函数f(x)的导数满足x2<1,则下列不等式中一定成立的是()A.f()+1<f()<f()﹣1 B.f()+1<f()<f()﹣1C.f()﹣1<f()<f()+1 D.f()﹣1<f()<f()+19.若集合,则下列结论中正确的是()A. B. C. D.10.二项式展开式中常数项等于()A.60 B.﹣60 C.15 D.﹣1511.某班微信群中甲、乙、丙、丁、戊五名同学同时抢4个红包,每人最多抢一个红包,且红包全被抢光,4个红包中有两个2元,两个5元(红包中金额相同视为相同的红包),则甲、乙两人同抢到红包的情况有()A.36种 B.24种 C.18种 D.9种12.从4种蔬菜品种中选出3种,分别种植在不同土质的3块土地上,不同的种植方法共有()A.12种 B.24种 C.36种 D.48种二、填空题:本题共4小题,每小题5分,共20分。13.设满足约束条件,则的最大值是__________.14.若x,y满足x≥1y≥-1x+y≥3,则z=x+2y15.已知不等式恒成立,其中为自然常数,则的最大值为_____.16.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有种(用数字作答).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知二次函数,设方程有两个实根(Ⅰ)如果,设函数的图象的对称轴为,求证:;(Ⅱ)如果,且的两实根相差为2,求实数的取值范围.18.(12分)设命题p:函数f(x)=x2-ax命题q:方程x2+ay2命题“p∨q”为真命题,“p∧q”为假命题,求实数a的取值范围.19.(12分)已知函数,.(1)当时,求不等式的解集;(2)若的解集包含,求实数的取值范围.20.(12分)已知函数当时,求函数在处的切线方程;当时,求函数的最大值。21.(12分)某产品具有一定的时效性,在这个时效期内,由市场调查可知,在不做广告宣传且每件获利a元的前提下,可卖出b件;若做广告宣传,广告费为n千元比广告费为千元时多卖出件。(1)试写出销售量与n的函数关系式;(2)当时,厂家应该生产多少件产品,做几千元的广告,才能获利最大?22.(10分)阿基米德是古希腊伟大的哲学家、数学家、物理学家,对几何学、力学等学科作出过卓越贡献.为调查中学生对这一伟大科学家的了解程度,某调查小组随机抽取了某市的100名高中生,请他们列举阿基米德的成就,把能列举阿基米德成就不少于3项的称为“比较了解”,少于三项的称为“不太了解”.他们的调查结果如下:0项1项2项3项4项5项5项以上理科生(人)110171414104文科生(人)08106321(1)完成如下列联表,并判断是否有的把握认为,了解阿基米德与选择文理科有关?比较了解不太了解合计理科生文科生合计(2)在抽取的100名高中生中,按照文理科采用分层抽样的方法抽取10人的样本.(i)求抽取的文科生和理科生的人数;(ii)从10人的样本中随机抽取3人,用表示这3人中文科生的人数,求的分布列和数学期望.参考数据:0.1000.0500.0100.0012.7063.8416.63510.828,.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
由题得,再利用复数的除法计算得解.【题目详解】由题得,故答案为:B【题目点拨】本题主要考查复数的运算,意在考查学生对该知识的掌握水平和分析推理计算能力.2、D【解题分析】由数学归纳法的证明步骤可知:当时,等式的左边是,应选答案D.3、C【解题分析】分析:画出满足条件的图像,计算图形中圆内横坐标小于的面积,除以圆的面积。详解:由图可知,点的横坐标小于的概率为,故选C点睛:几何概型计算面积比值。4、B【解题分析】解:分三类:种两种花有种种法;种三种花有2种种法;种四种花有种种法.共有2++=1.故选B5、C【解题分析】
利用角平分线定理以及平面向量的线性运算法则可得,两边平方,利用平面向量数量积的运算法则,化简即可得结果.【题目详解】如图,因为是的角平分线,所以,所以,即.两边平方得,所以,故选C.【题目点拨】本题主要考查平面向量的线性运算法则,以及平面向量数量积的运算法则,属于中档题.向量数量积的运算主要掌握两点:一是数量积的基本公式;二是向量的平方等于向量模的平方.6、A【解题分析】试题分析:∵x3<x2,∴x2∵loga(2-1)=loga1=0考点:命题的真假.7、D【解题分析】
根据同角三角函数基本关系,得到,求解,再根据题意,即可得出结果.【题目详解】因为,由同角三角函数基本关系可得:,解得:,又是第四象限角,所以.故选:D.【题目点拨】本题主要考查已知正切求正弦,熟记同角三角函数基本关系即可,属于常考题型.8、D【解题分析】
构造函数g(x)=f(x),利用导数可知函数在(0,+∞)上是减函数,则答案可求.【题目详解】由x2f′(x)<1,得f′(x),即得f′(x)0,令g(x)=f(x),则g′(x)=f′(x)0,∴g(x)=f(x)在(0,+∞)上为单调减函数,∴f()+2<f()+3<f()+4,则f()<f()+1,即f()﹣1<f();f()<f()+1.综上,f()﹣1<f()<f()+1.故选:D.【题目点拨】本题考查利用导数研究函数的单调性,正确构造函数是解题的关键,是中档题.9、C【解题分析】
由题意首先求得集合B,然后逐一考查所给选项是否正确即可.【题目详解】求解二次不等式可得:,则.据此可知:,选项A错误;,选项B错误;且集合A是集合B的子集,选项C正确,选项D错误.本题选择C选项,故选C.【题目点拨】本题主要考查集合的表示方法,集合之间的关系的判断等知识,熟记集合的基本运算方法是解答的关键,意在考查学生的转化能力和计算求解能力.10、A【解题分析】
化简二项式展开式的通项公式,由此计算的系数,从而得出正确选项.【题目详解】当时,即,故常数项为,选A.【题目点拨】本小题主要考查二项式展开式的通项公式,考查运算求解能力,属于基础题.11、C【解题分析】
分三种情况:(1)都抢到2元的红包(2)都抢到5元的红包(3)一个抢到2元,一个抢到5元,由分类计数原理求得总数。【题目详解】甲、乙两人都抢到红包一共有三种情况:(1)都抢到2元的红包,有种;(2)都抢到5元的红包,有种;(3)一个抢到2元,一个抢到5元,有种,故总共有18种.故选C.【题目点拨】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,是根据得红包情况进行分类。12、B【解题分析】
由分步计数原理计算可得答案.【题目详解】根据题意,分2步进行分析:①、先在4种蔬菜品种中选出3种,有种取法,②、将选出的3种蔬菜对应3块不同土质的土地,有种情况,则不同的种植方法有种;故选:B.【题目点拨】本题考查计数原理的运用,注意本题问题要先抽取,再排列.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:首先根据题中所给的约束条件,画出相应的可行域,再将目标函数化成斜截式,之后在图中画出直线,在上下移动的过程中,结合的几何意义,可以发现直线过B点时取得最大值,联立方程组,求得点B的坐标代入目标函数解析式,求得最大值.详解:根据题中所给的约束条件,画出其对应的可行域,如图所示:由可得,画出直线,将其上下移动,结合的几何意义,可知当直线过点B时,z取得最大值,由,解得,此时,故答案为6.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.14、1【解题分析】
画出不等式组表示的可行域,将z=x+2y变形为y=-x2+【题目详解】画出不等式组表示的可行域,如图阴影部分所示.由z=x+2y可得y=-x平移直线y=-x2+z2,由图形得,当直线经过可行域内的点A时,直线y=-由x+y=3y=-1解得x=4所以点A的坐标为(4,-1).所以zmin故答案为1.【题目点拨】利用线性规划求最值体现了数形结合思想的运用,解题的关键有两个:一是准确地画出不等式组表示的可行域;二是弄清楚目标函数中z的几何意义,根据题意判断是截距型、斜率型、还是距离型,然后再结合图形求出最优解后可得所求.15、【解题分析】
先利用导数确定不等式恒成立条件,再利用导数确定的最大值.【题目详解】令当时,,不满足条件;当时,,当时当时因此,从而令再令所以当时;当时;即,从而的最大值为.【题目点拨】本题考查利用导数研究不等式恒成立以及利用导数求函数最值,考查综合分析求解能力,属较难题.16、390【解题分析】
用2色涂格子有种方法,
用3色涂格子,第一步选色有,第二步涂色,共有种,
所以涂色方法种方法,
故总共有390种方法.
故答案为:390三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解题分析】分析:(1)有转化为有两根:一根在与之间,另一根小于,利用一元二次方程的根分布可证;(2)先有,知两根同号,在分两根均为正和两根均为负两种情况的讨论,再利用两个之和与两根之积列不等式可求的取值范围.详解:(1)设,且,则由条件x1<2<x2<4得(2),又或综上:点睛:利用函数的零点求参数范围问题,通常有两种解法:一种是利用方程中根与系数的关系或利用函数思想结合图象求解;二种是构造两个函数分别作出图象,利用数形结合求解,此类题目也体现了函数与方程,数形结合的思想.18、a<1【解题分析】分析:化简命题p可得a≤0,化简命题q可得0<a<1,由p∨q为真命题,p∧q为假命题,可得p,q一真一假,分两种情况讨论,对于p真q假以及p假q真分别列不等式组,分别解不等式组,然后求并集即可求得实数a的取值范围.详解:由于命题p:函数f(x)=x2-ax所以a≤0命题q:方程x2+ay2所以2a命题“p∨q”为真命题,“p∧q”为假命题,则p、①p真q假时:a≤0a≤0②p假q真综上所述:a的取值范围为:a<1点睛:本题通过判断或命题、且命题的真假,综合考查二次函数的单调性以及椭圆的标准方程与性质,属于中档题.解答非命题、且命题与或命题真假有关的题型时,应注意:(1)原命题与其非命题真假相反;(2)或命题“一真则真”;(3)且命题“一假则假”.19、(1).(2).【解题分析】
(1)利用分类讨论法解绝对值不等式;(2)等价转化为对任意的,恒成立,即对任意的,恒成立,再解不等式得解.【题目详解】(1)当时,.①当时,原不等式可化为,化简得,解得,∴;②当时,原不等式可化为,化简得,解得,∴;③当时,原不等式可化为,化简得,解得,∴;综上所述,不等式的解集是;(2)由题意知,对任意的,恒成立,即对任意的,恒成立,∵当时,,∴对任意的,恒成立,∵,,∴,∴,即实数的取值范围为.【题目点拨】本题主要考查分类讨论法解绝对值不等式,考查绝对值三角不等式的应用和不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.20、(1)(2)答案不唯一,具体见解析【解题分析】
(1)当时,,利用导数的几何意义求曲线的切线方程;(2)求函数的导数,讨论,,三种情况函数的单调性,得到函数的最大值.【题目详解】解:当时,,,所以切线方程为,即当时,当,,单调递增,此时,当时,当,,单调递减,当,,单调递增,此时,又,所以当时,当时,.当时,当,,单调递减,此时综上,当时,,当时,.【题目点拨】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教师招聘之《幼儿教师招聘》通关检测卷含答案详解(突破训练)
- 2025内蒙古呼伦贝尔扎兰屯市综合类岗位“校园引才”37人笔试备考及答案详解(全优)
- 2025年兵团第十师北屯市引进和事业编工作人员考试笔试试卷【附解析】
- 2025内蒙古霍林河机场管理有限责任公司拟录用人员笔试历年参考题库附带答案详解
- 100MW300MWh构网型电化学独立储能项目可行性研究报告模板-拿地立项申报
- 2025年多式联运信息平台协同物流与智慧物流产业政策解读报告
- 合肥市S社区“三社联动”:运行机制、困境与突破路径研究
- 教师招聘之《小学教师招聘》预测复习附答案详解(预热题)
- 2025年教师招聘之《小学教师招聘》题库附答案详解【突破训练】
- 教师招聘之《小学教师招聘》模拟卷包带答案详解(突破训练)
- 2025上海市中学生行为规范
- 《煤矿安全规程》2025
- 燃气综合考试题及答案
- 临建人员安全教育
- 年产50万件巴枪以及快递包装袋生产项目报告表
- 柴油使用安全管理办法
- 安全生产的主体责任
- 安全副总经理岗位职责
- 中国移民史与典型移民事件
- 患者发生病情变化应急预案
- 质量改进培训课件
评论
0/150
提交评论