甘肃省庆阳市宁县中2024届数学高二第二学期期末监测模拟试题含解析_第1页
甘肃省庆阳市宁县中2024届数学高二第二学期期末监测模拟试题含解析_第2页
甘肃省庆阳市宁县中2024届数学高二第二学期期末监测模拟试题含解析_第3页
甘肃省庆阳市宁县中2024届数学高二第二学期期末监测模拟试题含解析_第4页
甘肃省庆阳市宁县中2024届数学高二第二学期期末监测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省庆阳市宁县中2024届数学高二第二学期期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,在菱形ABCD中,,线段AD,BD,BC的中点分别为E,F,K,连接EF,FK.现将绕对角线BD旋转,令二面角A-BD-C的平面角为,则在旋转过程中有()A. B. C. D.2.根据党中央关于“精准”脱贫的要求,我市某农业经济部门决定派出五位相关专家对三个贫困地区进行调研,每个地区至少派遣一位专家,其中甲、乙两位专家需要派遣至同一地区,则不同的派遣方案种数为A.18 B.24 C.28 D.363.已知,则()A. B. C. D.4.设数列是单调递减的等差数列,前三项的和为12,前三项的积为28,则()A.1B.4C.7D.1或75.过抛物线y2=4x焦点F的直线交抛物线于A、B两点,交其准线于点C,且A、C位于x轴同侧,若|AC|=2|AF|,则|BF|等于()A.2 B.3 C.4 D.56.已知二项式的展开式中各项的二项式系数和为,其展开式中的常数项为,则()A. B. C. D.7.复数的模为()A. B. C. D.8.已知点与抛物线的焦点的距离是,则的值是()A. B. C. D.9.魏晋时期数学家刘徽在他的著作九章算术注中,称一个正方体内两个互相垂直的内切圆柱所围成的几何体为“牟合方盖”,刘徽通过计算得知正方体的内切球的体积与“牟合方盖”的体积之比应为:若正方体的棱长为2,则“牟合方盖”的体积为A.16 B. C. D.10.函数的零点所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)11.函数图象的大致形状是()A. B. C. D.12.已知正三棱锥的外接球的半径为,且满足则正三棱锥的体积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.抛物线的焦点为F,点是抛物线C上的一点满足,则抛物线C的方程为________.14.已知抛物线的焦点为,平行轴的直线与圆交于两点(点在点的上方),与交于点,则周长的取值范围是____________15.已知满足约束条件,则的最大值为__16.二项式的展开式中的系数为,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数=[].(1)若曲线在点(1,)处的切线与轴平行,求;(2)若在处取得极小值,求的取值范围.18.(12分)某研究机构为了调研当代中国高中生的平均年龄,从各地多所高中随机抽取了40名学生进行年龄统计,得到结果如下表所示:年龄(岁)数量6101284(Ⅰ)若同一组数据用该组区间的中点值代表,试估计这批学生的平均年龄;(Ⅱ)若在本次抽出的学生中随机挑选2人,记年龄在间的学生人数为,求的分布列及数学期望.19.(12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了月日至月日的每天昼夜温差与实验室每天每颗种子中的发芽数,得到如下资料:日期月日月日月日月日月日温差发芽数(颗)该农科所确定的研究方案是:先从这组数据中选取组,用剩下的组数据求线性回归方程,再对被选取的组数据进行检验.(1)求选取的组数据恰好是不相邻两天数据的概率;(2)若选取的是月日与月日的数据,请根据月日至月日的数据求出关于的线性回归方程;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过颗.则认为得到的线性回归方程是可靠的.试问(2)中所得到的线性回归方程是可靠的吗?附:回归直线的斜率和截距的最小二乘估计公式分别为:,.20.(12分)设相互垂直的直线,分别过椭圆的左、右焦点,,且与椭圆的交点分别为、和、.(1)当的倾斜角为时,求以为直径的圆的标准方程;(2)问是否存在常数,使得恒成立?若存在,求的值;若不存在,请说明理由.21.(12分)已知数列的前项的和,满足,且.(1)求数列的通项公式;(2)若数列满足:,求数列的前项的和.22.(10分)如图,三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AA1=AC=2BC,∠ACB=90°.(Ⅰ)求证:AC1⊥A1B;(Ⅱ)求直线AB与平面A1BC所成角的正切值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】

首先根据旋转前后的几何体,表示和,转化为在两个有公共底边的等腰三角形比较顶角的问题,还需考虑和两种特殊情况.【题目详解】如图,绕旋转形成以圆为底面的两个圆锥,(为圆心,为半径,为的中点),,,当且时,与等腰中,为公共边,,,.当时,,当时,,综上,。C.D选项比较与的大小关系,如图即比较与的大小关系,根据特殊值验证:又当时,,当时,,都不正确.故选B.【题目点拨】本题考查了二面角的相关知识,考查空间想象能力,难度较大,本题的难点是在动态的旋转过程中,如何转化和,从而达到比较的目的,或考查和两种特殊情况,可快速排除选项.2、D【解题分析】分析:按甲乙两人所派地区的人数分类,再对其他人派遣。详解:类型1:设甲、乙两位专家需要派遣的地区有甲乙两人则有,另外3人派往2个地区,共有18种。类型2:设甲、乙两位专家需要派遣的地区有甲乙丙三人则有,另外2人派往2个地区,共有18种。综上一共有36种,故选D点睛:有限制条件的分派问题,从有限制条件的入手,一般采用分步计数原理和分类计数原理,先分类后分步。3、D【解题分析】

利用同角三角函数基本关系式,诱导公式,二倍角的余弦函数公式即可求值得解.【题目详解】∵cosθ•tanθ=sinθ,∴sin()=cos2θ=1﹣2sin2θ=1﹣2.故选D.【题目点拨】本题主要考查了同角三角函数基本关系式,诱导公式,二倍角的余弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.4、C【解题分析】试题分析:,所以,因为递减数列,所以,解得。考点:等差数列5、C【解题分析】

由题意可知:|AC|=2|AF|,则∠ACD,利用三角形相似关系可知丨AF丨=丨AD丨,直线AB的切斜角,设直线l方程,代入椭圆方程,利用韦达定理及抛物线弦长公式求得丨AB丨,即可求得|BF|.【题目详解】抛物线y2=4x焦点F(1,0),准线方程l:x=﹣1,准线l与x轴交于H点,过A和B做AD⊥l,BE⊥l,由抛物线的定义可知:丨AF丨=丨AD丨,丨BF丨=丨BE丨,|AC|=2|AF|,即|AC|=2|AD|,则∠ACD,由丨HF丨=p=2,∴,则丨AF丨=丨AD丨,设直线AB的方程y(x﹣1),,整理得:3x2﹣10x+3=0,则x1+x2,由抛物线的性质可知:丨AB丨=x1+x2+p,∴丨AF丨+丨BF丨,解得:丨BF丨=4,故选:C.【题目点拨】本题考查抛物线的性质,直线与抛物线的位置关系,考查相似三角形的性质,考查计算能力,数形结合思想,属于中档题.6、C【解题分析】

二项展开式的二项式系数和为,可得,使其通项公式为常数项时,求得,从而得到关于的方程.【题目详解】展开式中各项的二项式系数和为,,得,,当时,,解得:.【题目点拨】求二项式定理展开式中各项系数和是用赋值法,令字母都为1;而展开式各项的二项式系数和固定为.7、A【解题分析】分析:首先根据复数模的公式以及复数的除法运算公式,将复数z化简,然后利用复数模的公式计算求得复数z的模.详解:因,所以,故选A.点睛:该题考查的是有关复数代数形式的除法运算以及复数模的计算公式,在求解的过程中,需要保证公式的正确性,属于简单题目.8、B【解题分析】

利用抛物线的焦点坐标和两点间的距离公式,求解即可得出的值.【题目详解】由题意可得抛物线的焦点为,因为点到抛物线的焦点的距离是5.所以解得.故选:B.【题目点拨】本题主要考查抛物线的标准方程和性质,还结合两点间距离公式求解.9、C【解题分析】

由已知求出正方体内切球的体积,再由已知体积比求得“牟合方盖”的体积.【题目详解】正方体的棱长为2,则其内切球的半径,正方体的内切球的体积,又由已知,.故选C.【题目点拨】本题考查球的体积的求法,理解题意是关键,是基础题.10、B【解题分析】

易知函数是上的增函数,,结合零点存在性定理可判断出函数零点所在区间.【题目详解】函数是上的增函数,是上的增函数,故函数是上的增函数.,,则时,;时,,因为,所以函数在区间上存在零点.故选:B.【题目点拨】本题考查了函数零点所在区间,利用函数的单调性与零点存在性定理是解决本题的关键,属于基础题.11、B【解题分析】

利用奇偶性可排除A、C;再由的正负可排除D.【题目详解】,,故为奇函数,排除选项A、C;又,排除D,选B.故选:B.【题目点拨】本题考查根据解析式选择图象问题,在做这类题时,一般要结合函数的奇偶性、单调性、对称性以及特殊点函数值来判断,是一道基础题.12、A【解题分析】

根据判断出为等边三角形的中心,由此求得正三棱锥的底面积和高,进而求得正三棱锥的体积.【题目详解】由于三棱锥是正三棱锥,顶点在底面的射影是底面中心.由可知,为等边三角形的中心,由于正三棱锥的外接球的半径为,故由正弦定理得,且正三棱锥的高为球的半径,故正三棱锥的体积为.所以本小题选A.【题目点拨】本小题主要考查正三棱锥的几何性质,考查向量加法运算,考查几何体外接球有关问题的求解,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

由在抛物线C上,结合抛物线的定义,即可求抛物线C的方程.【题目详解】当时,,解得,则抛物线C的方程为:;当时,,解得,则抛物线C的方程为:;故答案为:.【题目点拨】本题考查利用抛物线的定义求抛物线的标准方程,难度较易.14、【解题分析】

过点作垂直与抛物线的准线,垂足为点,由抛物线的定义得,从而得出的周长为,考查直线与圆相切和过圆心,得出、、不共线时的范围,进而得出周长的取值范围。【题目详解】如下图所示:抛物线的焦点,准线为,过点作,垂足为点,由抛物线的定义得,圆的圆心为点,半径长为,则的周长,当直线与圆相切时,则点、重合,此时,;当直线过点时,则点、、三点共线,则。由于、、不能共线,则,所以,,即,因此,的周长的取值范围是,故答案为:。【题目点拨】本题考查抛物线的定义,考查三角形周长的取值范围,在处理直线与抛物线的综合问题时,若问题中出现焦点,一般要将抛物线上的点到焦点的距离与该点到准线的距离利用定义转化,利用共线求最值,有时也要注意利用临界位置得出取值范围,考查逻辑推理能力与运算求解能力,属于难题。15、【解题分析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【题目详解】由约束条件作出可行域,如图所示,化目标函数为,由图可得,当直线过时,直线在轴上的截距最大,所以有最大值为.故答案为1.【题目点拨】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.16、【解题分析】分析:先根据二项展开式的通项求得的系数,进而得到的值,然后再根据微积分基本定理求解即可.详解:二项式的展开式的通项为,令,可得的系数为,由题意得,解得.∴.点睛:解答有关二项式问题的关键是正确得到展开式的通项,然后根据题目要求求解.定积分计算的关键是确定被积函数的原函数,然后根据微积分基本定理求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)1(2)(,)【解题分析】分析:(1)先求导数,再根据得a;(2)先求导数的零点:,2;再分类讨论,根据是否满足在x=2处取得极小值,进行取舍,最后可得a的取值范围.详解:解:(Ⅰ)因为=[],所以f′(x)=[2ax–(4a+1)]ex+[ax2–(4a+1)x+4a+3]ex(x∈R)=[ax2–(2a+1)x+2]ex.f′(1)=(1–a)e.由题设知f′(1)=2,即(1–a)e=2,解得a=1.此时f(1)=3e≠2.所以a的值为1.(Ⅱ)由(Ⅰ)得f′(x)=[ax2–(2a+1)x+2]ex=(ax–1)(x–2)ex.若a>,则当x∈(,2)时,f′(x)<2;当x∈(2,+∞)时,f′(x)>2.所以f(x)<2在x=2处取得极小值.若a≤,则当x∈(2,2)时,x–2<2,ax–1≤x–1<2,所以f′(x)>2.所以2不是f(x)的极小值点.综上可知,a的取值范围是(,+∞).点睛:利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.18、(1)估计这批学生的平均年龄为岁;(2)见解析.【解题分析】分析:(1)根据组中值与对应区间概率乘积的和计算平均数,(2)先判断随机变量服从“超几何分布”,再根据“超几何分布”分布列公式以及数学期望公式求结果.详解:(Ⅰ)由表中的数据可以估算这批学生的平均年龄为.所以估计这批学生的平均年龄为(岁).(Ⅱ)由表中数据知,“本次抽出的学生中”挑选2人,服从“超几何分布”,则,,.故的分布列为012故的数学期望为.点睛:对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布,超几何分布),则此随机变量的期望可直接利用这种典型分布的期望公式()求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.19、(1);(2);(3)见解析【解题分析】分析:(1)根据题意列举出从5组数据中选取2组数据共有10种情况,每种情况都是可能出现的,满足条件的事件包括的基本事件有6种.根据等可能事件的概率做出结果.

(2)根据所给的数据,先求出,,即求出本组数据的样本中心点,根据最小二乘法求出线性回归方程的系数,写出线性回归方程.

(3)根据估计数据与所选出的检验数据的误差均不超过2颗,就认为得到的线性回归方程是可靠的,根据求得的结果和所给的数据进行比较,得到所求的方程是可靠的.详解:(1)设“选取的2组数据恰好是不相邻两天的数据”为事件A.从5组数据中选取2组数据共有10种情况:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),其中数据为12月份的日期数.每种情况都是等可能出现的,事件A包括的基本事件有6种.∴.∴选取的2组数据恰好是不相邻两天数据的概率是.(2)由数据可得,.∴,.∴y关于x的线性回归方程为.(3)当x=10时,,|22-23|<2;同理,当x=8时,,|17-16|<2.∴(2)中所得到的线性回归方程是可靠的.点睛:本题考查等可能事件的概率,考查线性回归方程的求法,考查最小二乘法,考查估计验算所求的方程是否是可靠的,属中档题..20、(Ⅰ)(Ⅱ)存在,使得恒成立,详见解析【解题分析】

(1)将直线的方程与椭圆的方程联立,列出韦达定理,计算出线段的中点坐标,利用弦长公式计算出,于此得出圆心坐标和半径长,再写出圆的标准式方程;(2)对直线的斜率是否存在进行分类讨论,在直线的斜率不存在时,分别计算出和,可计算出的值,在直线的斜率存在且不为零时,设直线的方程为,将该直线方程与椭圆方程联立,利用弦长公式以及韦达定理计算出,同理计算出,代入题中等式计算出的值,从而说明实数存在.【题目详解】(1)由题意可设的方程为,代入可得.所以,的中点坐标为.又,所以,以为直径的圆的方程为.(2)假设存在常数,使得恒成立.①当与轴垂直或与轴垂直时,;②设直线的方程为,则直线的方程为.将的方程代入得:.由韦达定理得:,,所以.同理可得.所以.因此,存在,使得恒成立.【题目点拨】本题考查直线与椭圆的综合问题,考查弦长公式、圆的标准方程,计算量大,解题的易错点就是计算,计算时可充分利用因式分解等一些常规步骤来操作,另外在设直线方程时也可以掌握一些技巧,降低运算量.21、(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论