湖南省醴陵市第二中学2024届数学高二第二学期期末质量检测试题含解析_第1页
湖南省醴陵市第二中学2024届数学高二第二学期期末质量检测试题含解析_第2页
湖南省醴陵市第二中学2024届数学高二第二学期期末质量检测试题含解析_第3页
湖南省醴陵市第二中学2024届数学高二第二学期期末质量检测试题含解析_第4页
湖南省醴陵市第二中学2024届数学高二第二学期期末质量检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省醴陵市第二中学2024届数学高二第二学期期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆的左右焦点分别,,焦距为4,若以原点为圆心,为直径的圆恰好与椭圆有两个公共点,则此椭圆的方程为()A. B.C. D.2.已知某随机变量的概率密度函数为则随机变量落在区间内在概率为()A. B. C. D.3.设集合,,则A. B. C. D.4.双曲线的离心率等于2,则实数a等于()A.1 B. C.3 D.65.已知点P(x,y)的坐标满足条件那么点P到直线3x-4y-13=0的距离的最小值为()A.2 B.1 C. D.6.已知,是双曲线的左、右焦点,点关于渐近线的对称点恰好落在以为圆心,为半径的圆上,则该双曲线的离心率为()A. B. C.2 D.37.从5名男公务员和4名女公务员中选出3人,分别派到西部的三个不同地区,要求3人中既有男公务员又有女公务员,则不同的选派议程种数是()A.70 B.140 C.420 D.8408.在一项调查中有两个变量和,下图是由这两个变量近8年来的取值数据得到的散点图,那么适宜作为关于的回归方程的函数类型是()A. B.C. D.()9.某县城中学安排4位教师去3所不同的村小支教,每位教师只能支教一所村小,且每所村小有老师支教.甲老师主动要求去最偏远的村小A,则不同的安排有()A.6 B.12 C.18 D.2410.椭圆的焦点坐标是()A. B. C. D.11.设集合,则()A. B. C. D.12.若函数为奇函数,则A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若,则________.14.已知球O是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)A-BCD的外接球,BC=3,AB=23,点E在线段BD上,且BD=3BE,过点E作圆O的截面,则所得截面圆面积的取值范围是__15.若函数在存在零点(其中为自然对数的底数),则的最小值是__________.16.已知平面向量,满足||=1,||=2,|﹣|=,则在方向上的投影是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了111名观众进行调查,下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图,将日均收看该体育节目时间不低于41分钟的观众称为“体育迷”.(1)根据已知条件完成下面的2×2列联表,并据此资料判断是否在犯错误的概率不超过的前提下认为"体育迷"与性别有关.性别非体育迷体育迷总计男女1144总计下面的临界值表供参考:1.141.111.141.241.1111.1141.111k2.1622.6153.8414.1245.5346.86911.828(参考公式:,其中)(2)将上述调查所得到的频率视为概率,现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X,若每次抽取的结果是相互独立的,求X的分布列、期望和方差.18.(12分)(1)已知矩阵的一个特征值为,其对应的特征向量,求矩阵及它的另一个特征值.(2)在极坐标系中,设P为曲线C:上任意一点,求点P到直线l:的最小距离.19.(12分)羽毛球比赛中采用每球得分制,即每回合中胜方得1分,负方得0分,每回合由上回合的胜方发球.设在甲、乙的比赛中,每回合发球,发球方得1分的概率为0.6,各回合发球的胜负结果相互独立.若在一局比赛中,甲先发球.(1)求比赛进行3个回合后,甲与乙的比分为的概率;(2)表示3个回合后乙的得分,求的分布列与数学期望.20.(12分)据悉,2017年教育机器人全球市场规模已达到8.19亿美元,中国占据全球市场份额10.8%.通过简单随机抽样得到40家中国机器人制造企业,下图是40家企业机器人的产值频率分布直方图.(1)求的值;(2)在上述抽取的40个企业中任取3个,抽到产值小于500万元的企业不超过两个的概率是多少?(3)在上述抽取的40个企业中任取2个,设为产值不超过500万元的企业个数减去超过500万元的企业个数的差值,求的分布列及期望.21.(12分)如果球、正方体与等边圆柱(底面直径与母线相等)的体积相等,求它们的表面积的大小关系.22.(10分)随着社会的进步与发展,中国的网民数量急剧增加.下表是中国从年网民人数及互联网普及率、手机网民人数(单位:亿)及手机网民普及率的相关数据.年份网民人数互联网普及率手机网民人数手机网民普及率2009201020112012201320142015201620172018(互联网普及率(网民人数/人口总数)×100%;手机网民普及率(手机网民人数/人口总数)×100%)(Ⅰ)从这十年中随机选取一年,求该年手机网民人数占网民总人数比值超过80%的概率;(Ⅱ)分别从网民人数超过6亿的年份中任选两年,记为手机网民普及率超过50%的年数,求的分布列及数学期望;(Ⅲ)若记年中国网民人数的方差为,手机网民人数的方差为,试判断与的大小关系.(只需写出结论)

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

已知,又以原点为圆心,为直径的圆恰好与椭圆有两个公共点,这两个公共点只能是椭圆短轴的顶点,从而有,于是可得,从而得椭圆方程。【题目详解】∵以原点为圆心,为直径的圆恰好与椭圆有两个公共点,∴这两个公共点只能是椭圆短轴的顶点,∴,又即,∴,∴椭圆方程为。故选:A。【题目点拨】本题考查椭圆的标准方程,解题关键时确定的值,本题中注意椭圆的对称轴,从而确定关系。2、B【解题分析】

求概率密度函数在(1,3)的积分,求得概率.【题目详解】由随机变量X的概率密度函数的意义得,故选B.【题目点拨】随机变量的概率密度函数在某区间上的定积分就是随机变量在这一区间上概率.3、C【解题分析】由,得:∴;∵,∴∴故选C4、A【解题分析】

利用离心率的平方列方程,解方程求得的值.【题目详解】由可得,从而选A.【题目点拨】本小题主要考查已知双曲线的离心率求参数,考查方程的思想,属于基础题.5、A【解题分析】

由约束条件作出可行域,数形结合得到最优解,由点到直线的距离公式求得点到直线的最小值,即可求解.【题目详解】由约束条件作出可行域,如图所示,由图可知,当与重合时,点到直线的距离最小为.故选:A.【题目点拨】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.6、C【解题分析】

设点关于渐近线的对称点为点,该渐近线与交点为,由平面几何的性质可得为等边三角形,设,则有;又,可得,代入离心率即可得出结果.【题目详解】设点关于渐近线的对称点为点,该渐近线与交点为,所以为线段的中垂线,故,所以为等边三角形,设,则有;又,可得,所以离心率.故选:C【题目点拨】本题主要考查了双曲线的几何性质以及渐近线和离心率,考查了学生逻辑推理与运算求解能力.7、C【解题分析】

试题分析:先分组:“个男个女”或“个女个男”,第一种方法数有,第二种方法数有.然后派到西部不同的地区,方法数有种.考点:排列组合.8、B【解题分析】

根据散点图的趋势,选定正确的选项.【题目详解】散点图呈曲线,排除A选项,且增长速度变慢,排除选项C、D,故选B.【题目点拨】本小题主要考查散点图,考查回归直线方程等知识,属于基础题.9、B【解题分析】

按照村小A安排一个人和安排两个人两种情况分类讨论,按先分组后排序的方法,计算出不同的安排总数.【题目详解】村小A安排一人,则有;村小A若安排2人,则有.故共有.选B.【题目点拨】本小题主要考查分类加法计算原理,考查简单的排列组合计算问题,属于基础题.10、C【解题分析】

从椭圆方程确定焦点所在坐标轴,然后根据求的值.【题目详解】由椭圆方程得:,所以,又椭圆的焦点在上,所以焦点坐标是.【题目点拨】求椭圆的焦点坐标时,要先确定椭圆是轴型还是轴型,防止坐标写错.11、C【解题分析】

解不等式得集合A,B,再由交集定义求解即可.【题目详解】由已知所以,故选C.【题目点拨】本题主要考查了集合的交集运算,属于基础题.12、A【解题分析】分析:运用奇函数的定义,可得,再计算即可详解:函数为奇函数,故选点睛:本题主要考查的是奇函数的定义,分段函数的应用,属于基础题。根据函数奇偶性的性质是解题的关键二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

利用二倍角公式直接计算得到答案.【题目详解】.【题目点拨】本题考查了三角恒等变换,意在考查学生的计算能力.14、[2π,4π]【解题分析】

设△BDC的中心为O1,球O的半径为R,连接oO1D,OD,O1E,OE,可得R2=3+(3﹣R)2,解得R=2,过点E作圆O的截面,当截面与OE垂直时,截面的面积最小,当截面过球心时,截面面积最大,即可求解.【题目详解】如图,设△BDC的中心为O1,球O的半径为R,连接oO1D,OD,O1E,OE,则O1D=3sin60在Rt△OO1D中,R2=3+(3﹣R)2,解得R=2,∵BD=3BE,∴DE=2在△DEO1中,O1E=3+4-2×∴OE=O过点E作圆O的截面,当截面与OE垂直时,截面的面积最小,此时截面圆的半径为22-2当截面过球心时,截面面积最大,最大面积为4π.故答案为:[2π,4π]【题目点拨】本题考查了球与三棱锥的组合体,考查了空间想象能力,转化思想,解题关键是要确定何时取最值,属于中档题.15、【解题分析】

依题意可得方程,在上存在解,要使取得最小值,则,令,利用导数研究函数的单调性,对分类讨论,分别求出的最小值,即可得解,【题目详解】解:依题意在存在零点,即方程在存在解,即,在存在解,要使取得最小值,则,令,则,①当时,在上恒成立,即在上单调递增,所以,即,,所以;②当即时,当时,,当时,,即在上单调递减,在上单调递增,所以,,所以,所以,令,则,,所以,所以在上单调递减,所以③当时,则在上恒成立,即在上单调递减,综上可得的最小值为故答案为:.【题目点拨】本题考查函数零点及最值问题,考查分析问题解决问题的能力及数形结合思想,属于难题.16、【解题分析】分析:根据向量的模求出•=1,再根据投影的定义即可求出.详解:∵||=1,||=2,|﹣|=,∴||2+||2﹣2•=3,解得•=1,∴在方向上的投影是=,故答案为点睛:本题考查了平面向量的数量积运算和投影的定义,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)2×2列联表答案见解析,在犯错误的概率不超过的前提下认为“体育迷”与性别有关.(2)分布列见解析,,.【解题分析】

(1)先根据频率分布直方图计算出“体育迷”的人数,结合2×2列联表中的数据可得表中其他数据,最后根据公式计算出的观测值,再依据临界值表给出判断.(2)利用二项分布可得分布列,再利用公式可求期望和方差.【题目详解】(1)由频率分布直方图可知,在抽取的111人中“体育迷”有(人).由独立性检验的知识得2×2列联表如下:性别非体育迷体育迷总计男311444女441144总计6424111将2×2列联表中的数据代入公式计算,得的观测值.所以在犯错误的概率不超过的前提下认为“体育迷”与性别有关.(2)由频率分布直方图知抽到“体育迷”的频率为,将频率视为概率,即从观众中抽取一名“体育迷”的概率为.由题意知,∴,从而X的分布列为:1123由二项分布的期望与方差公式得,.【题目点拨】本题考查频率分布直方图的应用、独立性检验,还考查了离散型随机变量的分布列、数学期望与方差,在计算离散型随机变量的分布列时,要借助于常见分布如二项分布、超几何分布等来简化计算,本题属于中档题.18、(1);;(2).【解题分析】

(1)由矩阵运算,代入可求得或,即求得另一个特征值。(2)由直角坐标与极坐标互换公式,实现直角坐标与极坐标的相互转化。【题目详解】(1)由得:,,矩阵的特征多项式为,令,得,解得或所以矩阵的另一个特征值为(2)以极点为原点,极轴为轴建立平面直角坐标系.因为,所以,将其化为普通方程,得将曲线:化为普通方程,得.所以圆心到直线的距离所以到直线的最小距离为【题目点拨】直角坐标与极坐标互换公式,利用这个公式可以实现直角坐标与极坐标的相互转化。19、(1)0.1(2)见解析【解题分析】

(1)记“第回合发球,甲胜”为事件,=1,2,2,且事件相互独立,设“2个回合后,甲与乙比分为2比1”为事件,由互斥事件概率加法公式和相互独立事件乘法公式求出比赛进行2个回合后,甲与乙的比分为2比1的概率;(2)的可能取值为0,1,2,2,分别求出相应的概率,由此求出的分布列和数学期望.【题目详解】解:记“第回合发球,甲胜”为事件,=1,2,2,且事件相互独立.(1)记“2个回合后,甲与乙比分为2比1”为事件,则事件发生表示事件或或发生,且,,互斥.又,,.由互斥事件概率加法公式可得.答:2个回合后,甲与乙比分为2比1的概率为0.1.(2)因表示2个回合后乙的得分,则0,1,2,2.,,..所以,随机变量的概率分布列为01220.2160.10.2040.144故随机变量的数学期望为=.答:的数学期望为1.276.【题目点拨】本题考查概率的求法、离散型随机变量的分布列、数学期望等基础知识,考查运算求解能力,是中档题.20、(1);(2);(3).【解题分析】分析:(1)根据频率分布直方图各矩形的面积和为可计算出.(2)根据频率分布直方图计算出产值小于500万元的企业共个,因此所求的概率为;(3)可取,运用超几何分布可以计算取各值的概率,从而得到

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论