




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
沈阳航空航天大学电子信息工程学院毕业设计(外文翻译)M.Nettles,“AJointMIMOOFDMTransceiverandMACDesignforMobileAdHocNetworking,”inProceedingsoftheInternationalWorkshoponWirelessAdHocNetworks,Oulu,Finland,May31-June32004.[21]J.W.Wallace,M.A.Jensen,A.L.Swindlehurst,andB.D.Jeffs,“ExperimentalcharacterizationoftheMIMOwirelesschannel:dataacquisitionandanalysis,”IEEETransactionsonWirelessCommunications,vol.2,pp.335–343,March2003.RapidMIMO-OFDMSoftwareDefinedRadioSystemPrototyping(Received:AmitGupta,AntonioForenza,andRobertW.HeathJr.WirelessNetworkingandCommunicationsGroupDepartmentofElectricalandComputerEngineering,TheUniversityofTexasatAustin1UniversityStationC0803,Austin,TX78712-0240USAPhone:+1-512-232-2014,Fax:+1-512-471-6512{agupta,forenza,rheath}@)AbstractMultipleinput-multipleoutput(MIMO)isanattractivetechnologyforfuturewirelesssystems.MIMOcommunication,enabledbytheuseofmultipletransmitandmultiplereceiveantennas,isknownforitshighspectralefficiencyaswellasitsrobustnessagainstfadingandinterference.CombiningMIMOwithorthogonalfrequencydivisionmultiplexing(OFDM),itispossibletosignificantlyreducereceivercomplexityasOFDMgreatlysimplifiesequalizationatthereceiver.MIMO-OFDMiscurrentlybeingconsideredforanumberofdevelopingwirelessstandards;consequently,thestudyofMIMO-OFDMinrealisticenvironmentsisofgreatimportance.ThispaperdescribesanapproachforprototypingaMIMO-OFDMsystemusingaflexiblesoftwaredefinedradio(SDR)systemarchitectureinconjunctionwithcommerciallyavailablehardware.Anemphasisonsoftwarepermitsafocusonalgorithmandsystemdesignissuesratherthanimplementationandhardwareconfiguration.Thepenaltyofthisflexibility,however,isthattheeaseofusecomesattheexpenseofoverallthroughput.Toillustratethebenefitsoftheproposedarchitecture,applicationstoMIMO-OFDMsystemprototypingandpreliminaryMIMOchannelmeasurementsarepresented.Adetaileddescriptionofthehardwareisprovidedalongwithdownloadablesoftwaretoreproducethesystem.INTRODUCTIONMultiple-inputmultiple-output(MIMO)wirelesssystemsusemultipletransmitandmultiplereceiveantennastoincreasecapacityandproviderobustnesstofading[1].Toobtainthesebenefitsinbroadbandchannelswithextensivefrequencyselectivity,MIMOcommunicationlinksrequirecomplexspacetimeequalizers.ThecomplexityofMIMOsystemscanbereduced,however,throughorthogonalfrequencydivisionmultiplexing(OFDM).OFDMisanattractivedigitalmodulationtechniquethatpermitsgreatlysimplifiedequalizationatthereceiver.WithOFDM,themodulatedsignaliseffectivelytransmittedinparalleloverNorthogonalfrequencytones.ThisconvertsawidebandfrequencyselectivechannelintoNnarrowbandflatfadingchannels.CurrentlyOFDMisusedinmanywirelessdigitalcommunicationsystems,suchastheIEEE802.11a/g[2],[3]standardsforwirelesslocalareanetworks(WLANs).MIMO-OFDMtechnologyisintheprocessofbeingstandardizedbytheIEEETechnicalGroup802.11n[4]andpromisestobeastrongcandidateforfourthgeneration(4G)wirelesscommunicationsystems[5].AsthetheorybehindMIMO-OFDMcommunicationcontinuestogrow,itbecomesincreasinglyimportanttodevelopprototypeswhichcanevaluatethesetheoriesinrealworldchannelconditions.Duringthepastfewyears,anumberofMIMO-OFDMprototypeshavebeendeveloped[6]–[12].TheseimplementationsmakeuseofFPGAsorDSPs,whichrequirealargeamountoflowlevelprogrammingandafixedpointimplementation.Thisisthepreferredsolutionwhendevelopinghigh-speedimplementations;however,ithinderstheflexibilityoftheplatformasthesesystemsarenoteasilyreconfigurable.Asaresultwhenexperimentingwithmanydifferentspace-timecodingschemesorreceiverdesigns,amoreflexiblesolutionmaybepreferred.InthispaperweproposeaMIMO-OFDMsystemarchitecturebasedonthesoftwaredefinedradio(SDR)paradigm.Theadvantageofthisapproachliesinthefactthattheuserisnotrequiredtohaveindepthhardwareknowledgeandmayimplementanumberofdifferentschemesbysimplyreconfiguringthesoftware.TheplatformusesNationalInstrumentsradiofrequency(RF)hardwareinconjunctionwiththeLabVIEWgraphicalprogramminglanguage.Withthisarchitecture,itispossibletodefineandsimulateasysteminahighlevelprogramminglanguageandthenseamlesslyapplythatcodetowardsthehardwareimplementation–thisgreatlyreducesthetimeinvolvedinsystemprototyping.Comparedwith[6]–[12],ourprototypingplatformcaneasilybereduplicatedasitconsistsofcommercial-off-the-shelfhardwareandpubliclyavailablesoftware.AuserwhopurchasestheRFhardwarefromNationalInstrumentsanddownloadstheavailableMIMOsoftwaretoolkitalongwiththeprototypingcodedevelopedbytheauthors(availableat[13],[14])canrealizethesamerapidprototypingbenefitswhichwediscussinthispaper.Theflexibilityofthecurrentimplementationoftheprototypeislimitedbysomehardwareconstraints,suchasthebandwidthofthePCIbus,whichpreventsfullyreal-timetransmissionoverthewirelesslink,andsoftwareconstraintslikeourlackofcompletesynchronizationalgorithmsinthesoftware,whichcausesustouseawiredsynchronizationchannel.ThespiritofthiscontributionistosummarizeourmethodanddescribeourfirsteffortstowardsthedevelopmentofacompleteMIMO-OFDMplatformdesignedforsystemvalidationandOFDMmodulatorRec0mbineBitStreamsOFDMEqualizerOFDMdemodOFDMdomodOFDMmodulatorSpatialMultiplexingOFDMmodulatorRec0mbineBitStreamsOFDMEqualizerOFDMdemodOFDMdomodOFDMmodulatorSpatialMultiplexingFig.1.A2×2MIMO-OFDMspatialmultiplexingsystemchannelmeasurements.Moreworkneedstobeinvestigatedtoovercomethelimitationsandexpandthecapabilitiesofourinitialdesign.Thispaperisorganizedasfollows.SectionIIexploresthesignalmodelforaMIMO-OFDMsystemandourspecificMIMO-OFDMimplementation.SectionIIIdiscussesthespecificsofthehardwareandsoftwareplatform.SectionIVshowspreliminaryresultsfromoursystemimplementationaswellaschannelmeasurementsinindoorenvironments.II.MIMO-OFDMIMPLEMENTATIONInthissectionwereviewtheMIMO-OFDMsignalmodelandthendescribeourspecificMIMO-OFDMsystemimplementation.A.MIMO-OFDMSignalModelInaMIMO-OFDMsystem(see[8]andthereferencestherein)MIMOspace-timecodesarecombinedwithOFDMmodulationatthetransmitterwhilecomplicatedspace-timefrequencyprocessingisemployedatthereceiver.Forsimplicityofexplanation,weconsiderspatialmultiplexingasillustratedinFig.1thoughitwillbeapparentthatothertransmissiontechniquescanbeimplementedintheproposedarchitecture.InaMIMO-OFDMsystemwithMTtransmitantennasandMRreceiveantennas,thesampledsignalatthereceiver(aftertheFFTandremovingthecyclicprefix)ofaspatialmultiplexingMIMOsystemforOFDMsymbolperiodnandtonekcanbeexpressedbythefollowingequation(assumingperfectlinearity,timing,andsynchronization.)[1](1)TheequalizationinMIMO-OFDMsystemsmaybeenabledthroughdifferentproceduressuchaszero-forcingequalizer,minimummean-squarederrorequalizer,V-BLASTsuccessivecancellingequalizer,spheredecoder,andmaximumlikelihooddecoder(see[1]foranoverview).Inourprototypewecurrentlyimplementthezero-forcingequalizer;theflexibilityoftheproposedarchitecturethoughallowsustoprototypemoresophisticatedequalizationstrategies.B.SystemImplementationandSpecificationsThefirstimplementationfeaturesspatialmultiplexingwithtwotransmitandtworeceiveantennas,asillustratedinFig.1.OtherMIMOschemesarealreadyavailableintheLabVIEWMIMOToolkit[14],andweareplanningtousethistoimplementotherspace-frequencycodesinthefuture.ThespecificationsofthesystemarelistedinTableI.InourMIMO-OFDMimplementation,OFDMwith64tonesisemployedovera16MHzbandwidth.Thecyclicprefixis16sampleslong.ThiscorrespondstoanOFDMsymboldurationof5μs,withaguardintervalof1μsandadataportionof4μs.WetransmitourOFDMsymbolsin200msdatapackets.This200mswasdeterminedbyourhardwareasmemoryconstraintsatthereceiverpreventedlongeracquisitionperiods.Thesystemisequippedwithanadjustablecarrierfrequency.Wechosetorunoursystemat2.4GHz,whichisthecarrierfrequencyusedforWLANs[2],[3].Variousmodulationschemesarepossible(BPSK,QPSK,16-QAM,64-QAM)alongwithoptionalconvolutionalcoding.ChannelestimationiscarriedoutbyperiodicallytransmittinganOFDMtrainingsymbol.Thefrequencyatwhichtrainingsymbolsaresentcanbeprogrammaticallychangedinthesoftwareanddependsontheexpectedvariationofthechannel.Theestimationatthereceiverisenabledbythepilotsymbols,sentoutoverorthogonaltonesacrossthetransmitantennas.Wethenusealinearinterpolationacrossthetonestoestimatethechannel’sfullfrequencyresponse.Oncewehaveachannelestimate,thedataisdemodulatedbyaMIMOzero-forcinglinearreceiver.Duetospacelimitations,inthiscontributionwedonotprovideanalyticaldetailsofthechannelestimationalgorithmemployedintheprototype.TABLEISPECIFICATIONSOFOURMIMO-OFDMIMPLEMENTATIONNo.ofTransmitAntennas2No.ofReceiveAntennas2CarrierFreq.2.4GHzBandwidth16MHzNo.ofTones64SubcarrierSpacing25kHzOFDMSymbolDuration5usGuardIntervalDuration1usOFDMdataduration4usLengthofCyclicPrefix16samplesMIMOSchemespatialmultiplexingPacketDuration200msFig.2.PictureoftheNationalInstrumentsRFhardwareWearecurrentlyavoidingcarriersynchronizationissuesbydirectlywiringtheclocksofthetransmitterandreceivertogether.Additionally,inordertoavoidtimingissueswearesendingatriggerfromthetransmittertothereceiverwhendatatransmissionbegins.Softwaresynchronizationisunderdevelopmentandwillbeincludedinfuturework.AswearefollowingaSDRapproachtoprototyping,therearemanyparametersofthesystemwhichcanbeadjustedprogrammatically.TheflexibilityenabledbyaSDRMIMOOFDMprototypebecomesclearinthefollowingsectionwherewepresentadetaileddescriptionoftheprototypingplatform.III.PROTOTYPINGPLATFORMHardwareDescriptionNationalInstruments’RFhardwareisthefoundationofourprototype,asillustratedinFigure2.ThehardwarecomesinthePCIextensionsforinstrumentation(PXI)formfactor(whichissimilartoPCIexceptdesignedforindustrialapplications).EachpairoftransmittersandreceiversishousedinseparatePXIchassis.EachPXIchassisisconnectedtoaPCthroughaPCIbridgewhichconnectsthePXIhardwaretothePCIbus.EachPCisequippedwithdual2.8GHzprocessorsand2Gbofmemory.ThespecificationsofthehardwareislistedinTableIIandthecorrespondingblockdiagramisdepictedinFigure3.TABLEIIHARDWARESPECIFICATIONSTransmitterArbitraryWaveformGeneratorPXI-5421100millionsamplespersec.16bitresolution43MHzbandwidthUpconverterPXI-5610250KHz-2.7GHzCarrier+13dBrangeDigitizerPXI-5620Receiver64millionsamplespersec.14bitresolution30MHzbandwidthDownconverterPXI-56009kHz-2.7GHzCarrier20MHzreal-timebandwidthEachtransmitunitiscalledaRFsignalgeneratoranditconsistsoftwoparts.Thefirstisthearbitrarywaveformgenerator(ARB).TheARBactsasthedigitaltoanalogconverter(DAC)anditoperatesatamaximumof100Msamples/secwitha16-bitresolution.TheARBhasa256MBbuffer,althoughthehardwareisenabledtocyclethroughthebuffertoprovideforcontinuoustransmission.Whentransmittingcomplexdata,theARBitselfupconvertsthesignaltoanintermediatefrequency(IF)of25MHz(thisIFcanbeprogrammaticallychanged)beforethesignalissenttotheRFupconverter.Theupconvertercanmodulateasignaluptoacarrierfrequencyof2.7GHzwithbandwidthsupto20MHzandiscapableofamaximumof13dBmofpower.TheARBhasatriggerlineavailablefortimingsynchronization,whiletheupconverterhasaninputavailableforclocksynchronization.ToextendtheusablerangeoftheprototypeweusedaMinicircuitsZQL-2700MLNWLNA(lownoiseamplifier)atthereceiver.WederivedthegainoftheLNAfromthelink-budgetequation[15]Additionally,fortimingandclocksynchronization,wefoundthatweneededa3waypowersplittertosendeachsignalouttoeachofthetransmitandreceivecomponents.Thissplitterwillbereplacedoncefullopenloopsynchronizationisimplemented.SoftwareDescriptionTheRFHardwareisdesignedtobeeasilyconfiguredandprogrammedthroughNationalInstruments’LabVIEWprogrammingenvironment.LabVIEWisadataflowbasedgraphicalprogramminglanguage.Thehardwarecanbeprogrammedinotherlanguages,however,LabVIEWprovidestheuserwithsimpleprogrammingandrapidprototypingcapabilities.WebegantheprototypingprocessbycreatingasimulationoftheMIMO-OFDMsysteminLabVIEW.ForthispurposeourresearchgrouphascreatedapubliclyavailableMIMOtoolkitforLabVIEWwhichcanbedownloadedat[14].ThistoolkitincludesthebuildingblockstosimulatevariousMIMOschemesaswellasthefunctionswhicharenecessarytosimulatethesystemcompletelyfrombasebanduptothemodulationanddecoders.TheMIMOschemesthatarecurrentlyincludedinthetoolkitarespatialmultiplexing,Alamoutiencoding,lineardispersionencoding,trelliscoding,alongwithothercommonMIMOschemesandfunctionstosupportsimulation.Aftercompletingsimulations,thenextstageinourprototypingprocesswastoactuallyprogramthehardware.WiththeLabVIEWsimulationsalreadycompleted,thetransitiontohardwareprogrammingwasverysimpleasthecodewrittenforthesystemsimulationcouldthenbeappliedwiththehardware.ManyofthelowlevelhardwareissueswereavoidedbyusingtheLabVIEWhardwaredevicedrivers.IV.RESULTSInthissectionwedescribeasimplesystemimplementationaswellasabasicchannelmeasurementsetup.Bothimple-mentationsareavailablefordownloadat[13]alongFig.4.TheLabVIEWtransmittersoftwareinterfacewithvariousprogramablesystemparametersMIMO-OFDMSystemImplementationOneoftheobjectivesofhardwareimplementationwastotestvariouscandidatecodingandreceiverstrategiesfortheMIMO-OFDMphysicallayerunderconsiderationintheIEEE802.11nstandard,whichiscurrentlyunderdevelopment.ThesystemfollowedthespecificationsoutlinedinSectionIIIwitha2×2spatialmultiplexingMIMOsystemcombinedwith64OFDMtones.QPSKmodulationwascombinedwithachannelestimationschemethatsendsatrainingsymboleveryfifthOFDMsymbol.Aspreviouslydiscussed,duetomemoryconstraints,only200msworthofpacketsofdataaretransmittedinagiventimeinterval.Inthisperiodweareconsistentlyabletoachieveadatarateof40.96Mbits/s(8.192Mbitsaretransmittedinthis200mstimeframe)withourgivenhardware.Duetoourcurrenthardwarelimitations,eachacquisitionrequiresapproximately4secondsofprocessingbeforeanewacquisitioncanoccur.Thustheoverallthroughputweachieveisabout2Mbitswhenoperatedusingthisdutycycle.Futurehardwareupgradeswillallowrealtimesystemimplementations.Fordemonstrationpurposeswetransmittedanimageasdisplayedinthegraphicaluserinterface(GUI)depictedinFigure4.ThedecodedimageisreportedinFigure5alongwiththeGUIatthereceiverside.Thedifferenceindownloadspeedoftheimageinnon-MIMOandMIMOconfigurationsprovidesanintuitivemotivationforMIMO,e.g.theimagetransferstwiceasfastwithMIMOinourconfiguration.WewillcontinuetobuildonourcurrentsystemimplementationasweimplementanumberofotheravailableMIMOschemeswhichareavailablethroughourMIMOtoolkit[14].Wearealsoinvestigatingaddingamediumaccesscontrol(MAC)protocolaswellasafeedbackchannel.B.ChannelMeasurementsAlongwiththesystemimplementation,weareusingtheprototypetoconductchannelmeasurements.Weonlyhavepreliminaryresultsfromthehardware,buttheyrevealthepotentialofthisapproachforconductingmeaningfulchannelmeasurements.Weperformedthechannelmeasurementsinthewirelessnetworkingandcommunicationsgroup’s(WNCG)workspaceintheEngineeringSciencebuildingatTheUniversityofTexasatAustin.Theenvironmentisatypicalcubicleofficeenvironment.Wecollecteddataatacarrierfrequencyof2.4GHzovera16MHzbandwidthwith64tones.Weemployedhalf-wavelengthomnidirectionaldipoleantennasforourchannelmeasurementstoradiateisotropicallyalongmultiplepropagationpaths,distributedaroundtransmitterandreceiveraccordingtothemodelin[16].Thetransmitandreceiveantennaswereplacedapproximately8metersapartinbetweencubiclessothattherewasnolineofsightpropagationpaths,withtwowallsbetweenthetransmitterandreceiver.Thetwotransmitantennaswerespacedfivewavelengthsapartfromeachother(approximately60centimeters)toreducethespatialcorrelationacrossdifferentMIMOchannels[17]andtheeffectofmutualcoupling[18].Thetworeceiveantennaswereseparatedbythesamedistance.Fig.5.TheLabVIEWreceiversoftwareinterfacewithvariousprogramablesystemparameters.preliminaryresultsfromthehardware,buttheyrevealthepotentialofthisapproachforconductingmeaningfulchannelmeasurements.Weperformedthechannelmeasurementsinthewirelessnetworkingandcommunicationsgroup’s(WNCG)workspaceintheEngineeringSciencebuildingatTheUniversityofTexasatAustin.Theenvironmentisatypicalcubicleofficeenvironment.Wecollecteddataatacarrierfrequencyof2.4GHzovera16MHzbandwidthwith64tones.Weemployedhalf-wavelengthomnidirectionaldipoleantennasforourchannelmeasurementstoradiateisotropicallyalongmultiplepropagationpaths,distributedaroundtransmitterandreceiveraccordingtothemodelin[16].Thetransmitandreceiveantennaswereplacedapproximately8metersapartinbetweencubiclessothattherewasnolineofsightpropagationpaths,withtwowallsbetweenthetransmitterandreceiver.Thetwotransmitantennaswerespacedfivewavelengthsapartfromeachother(approximately60centimeters)toreducethespatialcorrelationacrossdifferentMIMOchannels[17]andtheeffectofmutualcoupling[18].Thetworeceiveantennaswereseparatedbythesamedistance.WemeasuredtheMIMOchannelsoverthetimeandfrequencydomainsandtheresultsareshowninFigure6.ThetemporalevolutionofthechannelisflatduetothelowDopplereffectinfixedwirelessscenarios,whereasthefluctuationsinthefrequencydomainareduetothemultiplepropagationpaths.InFigure7wedisplaytheaveragepowerdelayprofile(PDP)ofchannelH22.WefoundagoodfitofthisPDPwithwellknownmodelsandmeasurementsresultsforindoorpropagationenvironments[12],[16],[19].NotethatthemodestselectivityofthechannelH22isduetothesmallspreadinthedelayprofile.V.CONCLUSIONSANDFUTUREWORKInthispaper,wepresentedaMIMO-OFDMprototypingarchitecturewhichemphasizesaSDRparadigm.Theplatformfreestheuserfromlow-levelhardwareimplementationissuesandallowsmoreintensivestudyofalgorithmandsystemdesignissues.Weillustratedapplicationsofthisapproachtosystemimplementationandchannelmeasurements.InfutureworkweplantoapplythistostudyMACprotocoldesignsforMIMO-OFDMadhocnetworks[22]aswellastomorecomprehensivelyanalyzeMIMOchannelsasin[21].ACKNOWLEDGEMENTSTheauthorswouldliketothankNationalInstrumentsfortheirhardwaredonationaswellasAndyHindeatNationalInstrumentsforhisassistancewiththehardwareandUTAustinstudentsBrettWesterveltandVeynuNarasimanfortheircontributionstothesystemprototype.REFERENCES[1]A.Paulraj,R.Nabar,andD.Gore,IntroductiontoSpace-TimeWirelessCommunications,CambridgeUniversityPress,2003.[2]“Part11:WirelessLANMediumAccessControl(MAC)andPhysicalLayer(PHY)Specifications:High-SpeedPhysicalLayerinthe5GHzBand,”IEEEStandard802.11a1999.[3]“Part11:WirelessLANMediumAccessControl(MAC)andPhysicalLayer(PHY)specificationsAmendment4:FurtherHigher-SpeedPhysicalLayerExtensioninthe2.4GHzBand,”IEEEStandard802.11g2003.[4]“IEEE802.11nTaskGroup,”/groups/802/11/Reports/tgnupdate.htm.[5]H.Sampath,S.Talwar,J.Tellado,V.Erceg,andA.Paulraj,“AFourth-GenerationMIMO-OFDMBroadbandWirelessSystem:Design,Performance,andFieldTrialResults,”IEEECommunicationsMagazine,vol.40,no.9,pp.143–149,September2002.[6]A.Adjoudaniet.al.,“PrototypeExperienceforMIMOBLASToverThird-GenerationWirelessSystem,”IEEEJournalonSelectedAreasinComm.,vol.21,no.3,pp.440–451,April2003.[7]P.Murphy,F.Lou,andP.Frantz,“AHardwareTestbedfortheImplementationandEvaluationofMIMOAlgorithms,”inIEEEInternationalConferenceonMobileandWirelessCommunicationsNetworks,October2003.[8]G.L.Stuber,J.R.Barry,S.W.Mclaughlin,Y.Li,M.A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商场管理知识与技能体系
- 特色餐饮品牌股权转让与产业链整合协议
- 知识产权保护员工保密合同范本
- 文化产业代理招聘合同模板
- 仓储物流园区停车场施工合同模板
- 餐饮加盟店终止及资产转让合同
- 车间场地租赁与节能降耗技术应用合同
- 财务预算编制财务顾问服务合同范本
- 群体行为管理问题分析
- 采棉机租赁及棉花采摘服务合同
- 2025年成都市中考历史试题卷(含答案)
- 建设工程法规考试题真题及答案
- 中国盐业集团有限公司所属企业招聘笔试题库2025
- 2024年江苏省泰兴市事业单位公开招聘教师岗考试题带答案分析
- Q-GDW 10393.1-2024 变电站设计规范-第1部分:35kV变电站
- (人教2024版)英语七下期末全册分单元总复习课件(新教材)
- 2025年二年级语文期末复习计划
- MOOC 数字逻辑电路实验-东南大学 中国大学慕课答案
- 国际标准舞智慧树知到期末考试答案2024年
- 国家开放大学《人文英语4》边学边练参考答案
- 入团志愿书(2016版本)(可编辑打印标准A4) (1)
评论
0/150
提交评论