




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
沈阳航空航天大学电子信息工程学院毕业设计(外文翻译)M.Nettles,“AJointMIMOOFDMTransceiverandMACDesignforMobileAdHocNetworking,”inProceedingsoftheInternationalWorkshoponWirelessAdHocNetworks,Oulu,Finland,May31-June32004.[21]J.W.Wallace,M.A.Jensen,A.L.Swindlehurst,andB.D.Jeffs,“ExperimentalcharacterizationoftheMIMOwirelesschannel:dataacquisitionandanalysis,”IEEETransactionsonWirelessCommunications,vol.2,pp.335–343,March2003.RapidMIMO-OFDMSoftwareDefinedRadioSystemPrototyping(Received:AmitGupta,AntonioForenza,andRobertW.HeathJr.WirelessNetworkingandCommunicationsGroupDepartmentofElectricalandComputerEngineering,TheUniversityofTexasatAustin1UniversityStationC0803,Austin,TX78712-0240USAPhone:+1-512-232-2014,Fax:+1-512-471-6512{agupta,forenza,rheath}@)AbstractMultipleinput-multipleoutput(MIMO)isanattractivetechnologyforfuturewirelesssystems.MIMOcommunication,enabledbytheuseofmultipletransmitandmultiplereceiveantennas,isknownforitshighspectralefficiencyaswellasitsrobustnessagainstfadingandinterference.CombiningMIMOwithorthogonalfrequencydivisionmultiplexing(OFDM),itispossibletosignificantlyreducereceivercomplexityasOFDMgreatlysimplifiesequalizationatthereceiver.MIMO-OFDMiscurrentlybeingconsideredforanumberofdevelopingwirelessstandards;consequently,thestudyofMIMO-OFDMinrealisticenvironmentsisofgreatimportance.ThispaperdescribesanapproachforprototypingaMIMO-OFDMsystemusingaflexiblesoftwaredefinedradio(SDR)systemarchitectureinconjunctionwithcommerciallyavailablehardware.Anemphasisonsoftwarepermitsafocusonalgorithmandsystemdesignissuesratherthanimplementationandhardwareconfiguration.Thepenaltyofthisflexibility,however,isthattheeaseofusecomesattheexpenseofoverallthroughput.Toillustratethebenefitsoftheproposedarchitecture,applicationstoMIMO-OFDMsystemprototypingandpreliminaryMIMOchannelmeasurementsarepresented.Adetaileddescriptionofthehardwareisprovidedalongwithdownloadablesoftwaretoreproducethesystem.INTRODUCTIONMultiple-inputmultiple-output(MIMO)wirelesssystemsusemultipletransmitandmultiplereceiveantennastoincreasecapacityandproviderobustnesstofading[1].Toobtainthesebenefitsinbroadbandchannelswithextensivefrequencyselectivity,MIMOcommunicationlinksrequirecomplexspacetimeequalizers.ThecomplexityofMIMOsystemscanbereduced,however,throughorthogonalfrequencydivisionmultiplexing(OFDM).OFDMisanattractivedigitalmodulationtechniquethatpermitsgreatlysimplifiedequalizationatthereceiver.WithOFDM,themodulatedsignaliseffectivelytransmittedinparalleloverNorthogonalfrequencytones.ThisconvertsawidebandfrequencyselectivechannelintoNnarrowbandflatfadingchannels.CurrentlyOFDMisusedinmanywirelessdigitalcommunicationsystems,suchastheIEEE802.11a/g[2],[3]standardsforwirelesslocalareanetworks(WLANs).MIMO-OFDMtechnologyisintheprocessofbeingstandardizedbytheIEEETechnicalGroup802.11n[4]andpromisestobeastrongcandidateforfourthgeneration(4G)wirelesscommunicationsystems[5].AsthetheorybehindMIMO-OFDMcommunicationcontinuestogrow,itbecomesincreasinglyimportanttodevelopprototypeswhichcanevaluatethesetheoriesinrealworldchannelconditions.Duringthepastfewyears,anumberofMIMO-OFDMprototypeshavebeendeveloped[6]–[12].TheseimplementationsmakeuseofFPGAsorDSPs,whichrequirealargeamountoflowlevelprogrammingandafixedpointimplementation.Thisisthepreferredsolutionwhendevelopinghigh-speedimplementations;however,ithinderstheflexibilityoftheplatformasthesesystemsarenoteasilyreconfigurable.Asaresultwhenexperimentingwithmanydifferentspace-timecodingschemesorreceiverdesigns,amoreflexiblesolutionmaybepreferred.InthispaperweproposeaMIMO-OFDMsystemarchitecturebasedonthesoftwaredefinedradio(SDR)paradigm.Theadvantageofthisapproachliesinthefactthattheuserisnotrequiredtohaveindepthhardwareknowledgeandmayimplementanumberofdifferentschemesbysimplyreconfiguringthesoftware.TheplatformusesNationalInstrumentsradiofrequency(RF)hardwareinconjunctionwiththeLabVIEWgraphicalprogramminglanguage.Withthisarchitecture,itispossibletodefineandsimulateasysteminahighlevelprogramminglanguageandthenseamlesslyapplythatcodetowardsthehardwareimplementation–thisgreatlyreducesthetimeinvolvedinsystemprototyping.Comparedwith[6]–[12],ourprototypingplatformcaneasilybereduplicatedasitconsistsofcommercial-off-the-shelfhardwareandpubliclyavailablesoftware.AuserwhopurchasestheRFhardwarefromNationalInstrumentsanddownloadstheavailableMIMOsoftwaretoolkitalongwiththeprototypingcodedevelopedbytheauthors(availableat[13],[14])canrealizethesamerapidprototypingbenefitswhichwediscussinthispaper.Theflexibilityofthecurrentimplementationoftheprototypeislimitedbysomehardwareconstraints,suchasthebandwidthofthePCIbus,whichpreventsfullyreal-timetransmissionoverthewirelesslink,andsoftwareconstraintslikeourlackofcompletesynchronizationalgorithmsinthesoftware,whichcausesustouseawiredsynchronizationchannel.ThespiritofthiscontributionistosummarizeourmethodanddescribeourfirsteffortstowardsthedevelopmentofacompleteMIMO-OFDMplatformdesignedforsystemvalidationandOFDMmodulatorRec0mbineBitStreamsOFDMEqualizerOFDMdemodOFDMdomodOFDMmodulatorSpatialMultiplexingOFDMmodulatorRec0mbineBitStreamsOFDMEqualizerOFDMdemodOFDMdomodOFDMmodulatorSpatialMultiplexingFig.1.A2×2MIMO-OFDMspatialmultiplexingsystemchannelmeasurements.Moreworkneedstobeinvestigatedtoovercomethelimitationsandexpandthecapabilitiesofourinitialdesign.Thispaperisorganizedasfollows.SectionIIexploresthesignalmodelforaMIMO-OFDMsystemandourspecificMIMO-OFDMimplementation.SectionIIIdiscussesthespecificsofthehardwareandsoftwareplatform.SectionIVshowspreliminaryresultsfromoursystemimplementationaswellaschannelmeasurementsinindoorenvironments.II.MIMO-OFDMIMPLEMENTATIONInthissectionwereviewtheMIMO-OFDMsignalmodelandthendescribeourspecificMIMO-OFDMsystemimplementation.A.MIMO-OFDMSignalModelInaMIMO-OFDMsystem(see[8]andthereferencestherein)MIMOspace-timecodesarecombinedwithOFDMmodulationatthetransmitterwhilecomplicatedspace-timefrequencyprocessingisemployedatthereceiver.Forsimplicityofexplanation,weconsiderspatialmultiplexingasillustratedinFig.1thoughitwillbeapparentthatothertransmissiontechniquescanbeimplementedintheproposedarchitecture.InaMIMO-OFDMsystemwithMTtransmitantennasandMRreceiveantennas,thesampledsignalatthereceiver(aftertheFFTandremovingthecyclicprefix)ofaspatialmultiplexingMIMOsystemforOFDMsymbolperiodnandtonekcanbeexpressedbythefollowingequation(assumingperfectlinearity,timing,andsynchronization.)[1](1)TheequalizationinMIMO-OFDMsystemsmaybeenabledthroughdifferentproceduressuchaszero-forcingequalizer,minimummean-squarederrorequalizer,V-BLASTsuccessivecancellingequalizer,spheredecoder,andmaximumlikelihooddecoder(see[1]foranoverview).Inourprototypewecurrentlyimplementthezero-forcingequalizer;theflexibilityoftheproposedarchitecturethoughallowsustoprototypemoresophisticatedequalizationstrategies.B.SystemImplementationandSpecificationsThefirstimplementationfeaturesspatialmultiplexingwithtwotransmitandtworeceiveantennas,asillustratedinFig.1.OtherMIMOschemesarealreadyavailableintheLabVIEWMIMOToolkit[14],andweareplanningtousethistoimplementotherspace-frequencycodesinthefuture.ThespecificationsofthesystemarelistedinTableI.InourMIMO-OFDMimplementation,OFDMwith64tonesisemployedovera16MHzbandwidth.Thecyclicprefixis16sampleslong.ThiscorrespondstoanOFDMsymboldurationof5μs,withaguardintervalof1μsandadataportionof4μs.WetransmitourOFDMsymbolsin200msdatapackets.This200mswasdeterminedbyourhardwareasmemoryconstraintsatthereceiverpreventedlongeracquisitionperiods.Thesystemisequippedwithanadjustablecarrierfrequency.Wechosetorunoursystemat2.4GHz,whichisthecarrierfrequencyusedforWLANs[2],[3].Variousmodulationschemesarepossible(BPSK,QPSK,16-QAM,64-QAM)alongwithoptionalconvolutionalcoding.ChannelestimationiscarriedoutbyperiodicallytransmittinganOFDMtrainingsymbol.Thefrequencyatwhichtrainingsymbolsaresentcanbeprogrammaticallychangedinthesoftwareanddependsontheexpectedvariationofthechannel.Theestimationatthereceiverisenabledbythepilotsymbols,sentoutoverorthogonaltonesacrossthetransmitantennas.Wethenusealinearinterpolationacrossthetonestoestimatethechannel’sfullfrequencyresponse.Oncewehaveachannelestimate,thedataisdemodulatedbyaMIMOzero-forcinglinearreceiver.Duetospacelimitations,inthiscontributionwedonotprovideanalyticaldetailsofthechannelestimationalgorithmemployedintheprototype.TABLEISPECIFICATIONSOFOURMIMO-OFDMIMPLEMENTATIONNo.ofTransmitAntennas2No.ofReceiveAntennas2CarrierFreq.2.4GHzBandwidth16MHzNo.ofTones64SubcarrierSpacing25kHzOFDMSymbolDuration5usGuardIntervalDuration1usOFDMdataduration4usLengthofCyclicPrefix16samplesMIMOSchemespatialmultiplexingPacketDuration200msFig.2.PictureoftheNationalInstrumentsRFhardwareWearecurrentlyavoidingcarriersynchronizationissuesbydirectlywiringtheclocksofthetransmitterandreceivertogether.Additionally,inordertoavoidtimingissueswearesendingatriggerfromthetransmittertothereceiverwhendatatransmissionbegins.Softwaresynchronizationisunderdevelopmentandwillbeincludedinfuturework.AswearefollowingaSDRapproachtoprototyping,therearemanyparametersofthesystemwhichcanbeadjustedprogrammatically.TheflexibilityenabledbyaSDRMIMOOFDMprototypebecomesclearinthefollowingsectionwherewepresentadetaileddescriptionoftheprototypingplatform.III.PROTOTYPINGPLATFORMHardwareDescriptionNationalInstruments’RFhardwareisthefoundationofourprototype,asillustratedinFigure2.ThehardwarecomesinthePCIextensionsforinstrumentation(PXI)formfactor(whichissimilartoPCIexceptdesignedforindustrialapplications).EachpairoftransmittersandreceiversishousedinseparatePXIchassis.EachPXIchassisisconnectedtoaPCthroughaPCIbridgewhichconnectsthePXIhardwaretothePCIbus.EachPCisequippedwithdual2.8GHzprocessorsand2Gbofmemory.ThespecificationsofthehardwareislistedinTableIIandthecorrespondingblockdiagramisdepictedinFigure3.TABLEIIHARDWARESPECIFICATIONSTransmitterArbitraryWaveformGeneratorPXI-5421100millionsamplespersec.16bitresolution43MHzbandwidthUpconverterPXI-5610250KHz-2.7GHzCarrier+13dBrangeDigitizerPXI-5620Receiver64millionsamplespersec.14bitresolution30MHzbandwidthDownconverterPXI-56009kHz-2.7GHzCarrier20MHzreal-timebandwidthEachtransmitunitiscalledaRFsignalgeneratoranditconsistsoftwoparts.Thefirstisthearbitrarywaveformgenerator(ARB).TheARBactsasthedigitaltoanalogconverter(DAC)anditoperatesatamaximumof100Msamples/secwitha16-bitresolution.TheARBhasa256MBbuffer,althoughthehardwareisenabledtocyclethroughthebuffertoprovideforcontinuoustransmission.Whentransmittingcomplexdata,theARBitselfupconvertsthesignaltoanintermediatefrequency(IF)of25MHz(thisIFcanbeprogrammaticallychanged)beforethesignalissenttotheRFupconverter.Theupconvertercanmodulateasignaluptoacarrierfrequencyof2.7GHzwithbandwidthsupto20MHzandiscapableofamaximumof13dBmofpower.TheARBhasatriggerlineavailablefortimingsynchronization,whiletheupconverterhasaninputavailableforclocksynchronization.ToextendtheusablerangeoftheprototypeweusedaMinicircuitsZQL-2700MLNWLNA(lownoiseamplifier)atthereceiver.WederivedthegainoftheLNAfromthelink-budgetequation[15]Additionally,fortimingandclocksynchronization,wefoundthatweneededa3waypowersplittertosendeachsignalouttoeachofthetransmitandreceivecomponents.Thissplitterwillbereplacedoncefullopenloopsynchronizationisimplemented.SoftwareDescriptionTheRFHardwareisdesignedtobeeasilyconfiguredandprogrammedthroughNationalInstruments’LabVIEWprogrammingenvironment.LabVIEWisadataflowbasedgraphicalprogramminglanguage.Thehardwarecanbeprogrammedinotherlanguages,however,LabVIEWprovidestheuserwithsimpleprogrammingandrapidprototypingcapabilities.WebegantheprototypingprocessbycreatingasimulationoftheMIMO-OFDMsysteminLabVIEW.ForthispurposeourresearchgrouphascreatedapubliclyavailableMIMOtoolkitforLabVIEWwhichcanbedownloadedat[14].ThistoolkitincludesthebuildingblockstosimulatevariousMIMOschemesaswellasthefunctionswhicharenecessarytosimulatethesystemcompletelyfrombasebanduptothemodulationanddecoders.TheMIMOschemesthatarecurrentlyincludedinthetoolkitarespatialmultiplexing,Alamoutiencoding,lineardispersionencoding,trelliscoding,alongwithothercommonMIMOschemesandfunctionstosupportsimulation.Aftercompletingsimulations,thenextstageinourprototypingprocesswastoactuallyprogramthehardware.WiththeLabVIEWsimulationsalreadycompleted,thetransitiontohardwareprogrammingwasverysimpleasthecodewrittenforthesystemsimulationcouldthenbeappliedwiththehardware.ManyofthelowlevelhardwareissueswereavoidedbyusingtheLabVIEWhardwaredevicedrivers.IV.RESULTSInthissectionwedescribeasimplesystemimplementationaswellasabasicchannelmeasurementsetup.Bothimple-mentationsareavailablefordownloadat[13]alongFig.4.TheLabVIEWtransmittersoftwareinterfacewithvariousprogramablesystemparametersMIMO-OFDMSystemImplementationOneoftheobjectivesofhardwareimplementationwastotestvariouscandidatecodingandreceiverstrategiesfortheMIMO-OFDMphysicallayerunderconsiderationintheIEEE802.11nstandard,whichiscurrentlyunderdevelopment.ThesystemfollowedthespecificationsoutlinedinSectionIIIwitha2×2spatialmultiplexingMIMOsystemcombinedwith64OFDMtones.QPSKmodulationwascombinedwithachannelestimationschemethatsendsatrainingsymboleveryfifthOFDMsymbol.Aspreviouslydiscussed,duetomemoryconstraints,only200msworthofpacketsofdataaretransmittedinagiventimeinterval.Inthisperiodweareconsistentlyabletoachieveadatarateof40.96Mbits/s(8.192Mbitsaretransmittedinthis200mstimeframe)withourgivenhardware.Duetoourcurrenthardwarelimitations,eachacquisitionrequiresapproximately4secondsofprocessingbeforeanewacquisitioncanoccur.Thustheoverallthroughputweachieveisabout2Mbitswhenoperatedusingthisdutycycle.Futurehardwareupgradeswillallowrealtimesystemimplementations.Fordemonstrationpurposeswetransmittedanimageasdisplayedinthegraphicaluserinterface(GUI)depictedinFigure4.ThedecodedimageisreportedinFigure5alongwiththeGUIatthereceiverside.Thedifferenceindownloadspeedoftheimageinnon-MIMOandMIMOconfigurationsprovidesanintuitivemotivationforMIMO,e.g.theimagetransferstwiceasfastwithMIMOinourconfiguration.WewillcontinuetobuildonourcurrentsystemimplementationasweimplementanumberofotheravailableMIMOschemeswhichareavailablethroughourMIMOtoolkit[14].Wearealsoinvestigatingaddingamediumaccesscontrol(MAC)protocolaswellasafeedbackchannel.B.ChannelMeasurementsAlongwiththesystemimplementation,weareusingtheprototypetoconductchannelmeasurements.Weonlyhavepreliminaryresultsfromthehardware,buttheyrevealthepotentialofthisapproachforconductingmeaningfulchannelmeasurements.Weperformedthechannelmeasurementsinthewirelessnetworkingandcommunicationsgroup’s(WNCG)workspaceintheEngineeringSciencebuildingatTheUniversityofTexasatAustin.Theenvironmentisatypicalcubicleofficeenvironment.Wecollecteddataatacarrierfrequencyof2.4GHzovera16MHzbandwidthwith64tones.Weemployedhalf-wavelengthomnidirectionaldipoleantennasforourchannelmeasurementstoradiateisotropicallyalongmultiplepropagationpaths,distributedaroundtransmitterandreceiveraccordingtothemodelin[16].Thetransmitandreceiveantennaswereplacedapproximately8metersapartinbetweencubiclessothattherewasnolineofsightpropagationpaths,withtwowallsbetweenthetransmitterandreceiver.Thetwotransmitantennaswerespacedfivewavelengthsapartfromeachother(approximately60centimeters)toreducethespatialcorrelationacrossdifferentMIMOchannels[17]andtheeffectofmutualcoupling[18].Thetworeceiveantennaswereseparatedbythesamedistance.Fig.5.TheLabVIEWreceiversoftwareinterfacewithvariousprogramablesystemparameters.preliminaryresultsfromthehardware,buttheyrevealthepotentialofthisapproachforconductingmeaningfulchannelmeasurements.Weperformedthechannelmeasurementsinthewirelessnetworkingandcommunicationsgroup’s(WNCG)workspaceintheEngineeringSciencebuildingatTheUniversityofTexasatAustin.Theenvironmentisatypicalcubicleofficeenvironment.Wecollecteddataatacarrierfrequencyof2.4GHzovera16MHzbandwidthwith64tones.Weemployedhalf-wavelengthomnidirectionaldipoleantennasforourchannelmeasurementstoradiateisotropicallyalongmultiplepropagationpaths,distributedaroundtransmitterandreceiveraccordingtothemodelin[16].Thetransmitandreceiveantennaswereplacedapproximately8metersapartinbetweencubiclessothattherewasnolineofsightpropagationpaths,withtwowallsbetweenthetransmitterandreceiver.Thetwotransmitantennaswerespacedfivewavelengthsapartfromeachother(approximately60centimeters)toreducethespatialcorrelationacrossdifferentMIMOchannels[17]andtheeffectofmutualcoupling[18].Thetworeceiveantennaswereseparatedbythesamedistance.WemeasuredtheMIMOchannelsoverthetimeandfrequencydomainsandtheresultsareshowninFigure6.ThetemporalevolutionofthechannelisflatduetothelowDopplereffectinfixedwirelessscenarios,whereasthefluctuationsinthefrequencydomainareduetothemultiplepropagationpaths.InFigure7wedisplaytheaveragepowerdelayprofile(PDP)ofchannelH22.WefoundagoodfitofthisPDPwithwellknownmodelsandmeasurementsresultsforindoorpropagationenvironments[12],[16],[19].NotethatthemodestselectivityofthechannelH22isduetothesmallspreadinthedelayprofile.V.CONCLUSIONSANDFUTUREWORKInthispaper,wepresentedaMIMO-OFDMprototypingarchitecturewhichemphasizesaSDRparadigm.Theplatformfreestheuserfromlow-levelhardwareimplementationissuesandallowsmoreintensivestudyofalgorithmandsystemdesignissues.Weillustratedapplicationsofthisapproachtosystemimplementationandchannelmeasurements.InfutureworkweplantoapplythistostudyMACprotocoldesignsforMIMO-OFDMadhocnetworks[22]aswellastomorecomprehensivelyanalyzeMIMOchannelsasin[21].ACKNOWLEDGEMENTSTheauthorswouldliketothankNationalInstrumentsfortheirhardwaredonationaswellasAndyHindeatNationalInstrumentsforhisassistancewiththehardwareandUTAustinstudentsBrettWesterveltandVeynuNarasimanfortheircontributionstothesystemprototype.REFERENCES[1]A.Paulraj,R.Nabar,andD.Gore,IntroductiontoSpace-TimeWirelessCommunications,CambridgeUniversityPress,2003.[2]“Part11:WirelessLANMediumAccessControl(MAC)andPhysicalLayer(PHY)Specifications:High-SpeedPhysicalLayerinthe5GHzBand,”IEEEStandard802.11a1999.[3]“Part11:WirelessLANMediumAccessControl(MAC)andPhysicalLayer(PHY)specificationsAmendment4:FurtherHigher-SpeedPhysicalLayerExtensioninthe2.4GHzBand,”IEEEStandard802.11g2003.[4]“IEEE802.11nTaskGroup,”/groups/802/11/Reports/tgnupdate.htm.[5]H.Sampath,S.Talwar,J.Tellado,V.Erceg,andA.Paulraj,“AFourth-GenerationMIMO-OFDMBroadbandWirelessSystem:Design,Performance,andFieldTrialResults,”IEEECommunicationsMagazine,vol.40,no.9,pp.143–149,September2002.[6]A.Adjoudaniet.al.,“PrototypeExperienceforMIMOBLASToverThird-GenerationWirelessSystem,”IEEEJournalonSelectedAreasinComm.,vol.21,no.3,pp.440–451,April2003.[7]P.Murphy,F.Lou,andP.Frantz,“AHardwareTestbedfortheImplementationandEvaluationofMIMOAlgorithms,”inIEEEInternationalConferenceonMobileandWirelessCommunicationsNetworks,October2003.[8]G.L.Stuber,J.R.Barry,S.W.Mclaughlin,Y.Li,M.A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026届苏州大学附属中学化学高二上期末学业水平测试试题含答案
- 四川省成都市锦江区嘉祥外国语高级中学2024-2025学年高一下学期期末考试化学试题(含答案)
- 湖南省长沙大学附属中学2024-2025学年高一下学期7月期末考试物理试卷(含解析)
- 房地产公司工作总结范文
- 社交媒体对品牌营销影响分析
- 汉字六书课件
- 汉字教学课件
- 军事理论(河北政法职业学院)知到智慧树答案
- 水轮机基础知识培训总结课件
- 大型设备吊装与安装方案
- 2025年发展对象考试题库附含答案
- 2025年新专长针灸考试题及答案
- 高三生物一轮复习课件微专题5电子传递链化学渗透假说及逆境胁迫
- DBJ50-T-306-2024 建设工程档案编制验收标准
- 2025四川雅安荥经县国润排水有限责任公司招聘5人笔试历年参考题库附带答案详解
- 公司解散清算的法律意见书、债权处理法律意见书
- 田间道路工程施工图设计说明
- 井下管路安装、维护管理规定
- GB/T 7967-2002声学水声发射器的大功率特性和测量
- GB 38507-2020油墨中可挥发性有机化合物(VOCs)含量的限值
- GA/T 1162-2014法医生物检材的提取、保存、送检规范
评论
0/150
提交评论