




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教育统计学
03讲集中量数问题你知道什么是集中量数吗?请说出你所知道的集中量数?讨论1描述某校教师工资平均水平?年工资单位(万元)组中值人数14-1514.5413-1413.5312-1312.5711-1211.5810-1110.599-109.5118-98.5127-87.5406-76.5605-65.5304-54.56小计190讨论2有一个学生第一周记住20个英文单词,第二周记住23个,第三周记住26个,第四周记住30个,第五周记住34个,问该生学习记忆英文单词的平均进步率是多少?讨论3有一学生15分钟学会生词30个,后10分钟学会生词也是30个。问该生每分钟平均学会多少个?或平均学习速度是多少?主要介绍算术平均数几何平均数调和平均数中数和众数第一节算术平均数一、算术平均数的定义算术平均数一般简称为平均数,或均数,或均值。一般用字母M或表示。二、算术平均数的数学性质
①各个变量值与平均数离差(离均差)之和等于零证明②各个变量值与平均数离差平方之和为最小值(离均平方和最小)证明:设x0为不等于平均数的任意值,则:代入以x0
为中心的离差平方和,得
平均数的这一性质说明:
以任意不为平均数的数值为中心计算的离差平方和总大于以平均数为中心计算的离差平方和,因此,算术平均数是误差最小的总体代表值。三、算术平均数的计算方法(一)未分组数据计算平均数(二)使用次数分布表计算平均数表3-1次数分组求平均数计算表
分组组中值(Xc)次数(f)Xc×f
计算80—70—60—857565692510675130
合计171315四、算术平均数特点与应用(一)特点1.反应灵敏2.计算严密3.计算简单4.简明易解5.适合于进一步代数运算6.较少受抽样变动的影响(二)运用如果一组数据是比较准确,可靠又同质,而且需要每一个数据都加入计算,同时还要作进一步代数运算时,这时就要用算术平均数表示其集中趋势。如果一组数据中出现两个极端的数目,或有一些数据不清楚,数据不同质时,就不宜使用算术平均数。在报告平均数时,要按特别指定的单位来表达。在书写平均数时,习惯上平均数保留的小数位数要比原来的测量数据多一位小数。第二节几何平均数MG一、几何平均数的定义定义:
几何平均数是计算平均比率或平均速度最适用的一种方法。凡是变量值的连乘积等于总比率或总速度的场合都适宜用几何平均法计算平均比率或平均速度。例1希望机械厂生产的机床要经过四个连续作业车间才能完成。2003年一季度第一车间铸造产品的合格率为95%,第二车间粗加工产品的合格率为93%,第三车间精加工产品的合格率为90%,第四车间组装的合格率为86%,则该企业的产品合格率为多少?例2某地区国民生产总值GNP在1988~1989年平均每年递增15%,1990~1992年平均递增12%,1993~1997年平均每年递增9%,试计算:该地区国民生产总值这十年平均增长速度?例3计算成绩平均提高率时间1995199619971998成绩65758088比率计算请计算学生阅读能力每周平均提高率测验次数第一次第二次第三次第四次第五次阅读能力分数345260.6769.3377.33二、几何平均数的应用条件⑴一组实验数据中有少数数据偏大或偏小,数据的分布呈偏态。⑵在心理物理学的等距与等比量表实验中,只能用几何平均数。⑶主要用于计算平均增长率或平均进步率等。
第三节调和平均数一、调和平均数的意义⒈定义:又称倒数平均数。
⒉在教育领域应用:主要应用于描述学习速度二、调和平均数的计算举例例1有一种蔬菜,早晨的价格每千克0.5元,中午0.2元,晚上0.1元。如果早、中、晚各买1元钱的蔬菜,则当天所买的蔬菜平均价格是多少?
以公式表示例2计算和比较两组学生演算速度组别学生速度(每小时所做的题数)计算第一组ABCD461012第二组EFGH661010三、小结:算术平均数和几何平均数、调和平均数的关系
如果根据同一资料计算,则调和平均数最小,几何平均数居中,算术平均数最大,即:算术平均数≥几何平均数≥调和平均数三、小结:算术平均数和几何平均数、调和平均数的关系例有1、3、6、7、9五个数,计算算术平均数和几何平均数、调和平均数第四节中数和众数一、中数㈠中数的定义和特点定义:中数又称中点数,中位数,中值,是指按顺序排列在一起的一组数据中居于中间位置的数。符号为Md或Mdn。特点:
不受两极量数的影响(二)中数的计算原始数据分组数据
(二)中数的计算方法1、原始数据求中数的方法当量数不多时,先把数据排序,若数据个数为奇数时,则为中数;若数据个数为偶数时,则为中数。(1)一组数据中无重复数值的情况①求数列4,6,7,8,12的中数?②有2,3,5,7,8,10,15,19共8个数,求其中数。(二)中数的计算方法(2)一组数据中有重复数值的情况①当重复数值没有位于数列中间时求数列5,5,6,10,12,15,17的中数。②当重复数目位于数据中间,数据的个数为奇数时求数列11,11,11,11,13,13,13,17,17的中数。③当重复数目位于数列中间,数据的个数为偶数时求数列11,11,11,11,13,13,13,17,17,18的中数。(二)中数的计算方法(二)中数的计算方法2、分组数据求中数的方法公式原理:公式:表3-3利用公式求分组次数表中中数
组限
次数自下而上累积次数自上而下累积次数
65—60—55—
50—45—40—35—3411138634845413017933718
31394548二、众数(一)众数的定义和特点⒈定义:指在一组量数中,出现频数最多的量数。用符号表示。⒉特点:获取容易;在一组量数中,众数可能不止一个;在次数分布中,众数受组距和组限的影响很大。(二)众数的求法1、用观察法求众数例:求2,3,3,5,3,4,3,6这一组数据的众数。2、用公式计算众数皮尔逊经验公式金氏(W.I.king)插补法(二)众数的求法皮尔逊(K.Person)近似公式皮尔逊经验法只有当次数分布呈现正态或接近正态时,才能使用。(二)众数的求法金氏插补法求众数:含众数这一区间的精确下限;:高于众数所在组一个组距那一分组区间的次数;:低于众数所在组一个组距那一分组区间的次数;i:组距。
金氏插补法适合次数分布比较偏斜的情况,比较接近正态的分布也适用。表3-4用金氏插补法求众数组限频数算法65—60—55—50—45—40—35—341113863众数的应用1.当需要快速而粗略地寻求一组数据的代表值时;2.当一组数据出现不同质的情况时;3.当次数分布中有两极端的数目时,除了一般用中数外,有时也用众数;4.当粗略估计次数分布的形态时,有时用平均数与众数之差,作为表示次数分布是否偏态的指标。5.当一组数据中同时有两个数值的次数都比较多时,即次数分布中出现双众数时,也多用众数来表示数据分布形态。平均数、中数与众数之间的关系见教材P33在偏态分布中,平均数永远位于尾端。一般偏态情况下,中数离平均数较近,而距众数较远。皮尔逊经验公式小结以数值为中心的集中量数算术平均数几何平均数调和平均数以位置为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业4.0背景下的智慧供应链建设
- 工业互联网发展趋势及案例分析
- 岩棉的环保特性及其在防火中的应用
- 工业4.0时代的设备维护与管理创新
- 嵌入式系统中的实时操作系统
- 山区旅游景区可持续发展规划探索
- 少儿教育中区角活动的创新设计与实施
- 少儿编程教育的市场营销分析
- 小学生如何宣传环保知识
- 小学生环保意识与法治教育的关系
- 2024年湖北省南漳县事业单位公开招聘教师岗考试题带答案分析
- 限高架维修合同8篇
- 全麻期间气道梗阻的预防与处理
- 工业大数据的安全与隐私保护-洞察阐释
- 病原微生物识别技巧试题及答案
- 2024-2025学年高中中国航天日班会 课件 弘扬航天精神 逐梦星辰大海
- 不稳定型心绞痛护理诊断及护理措施
- 药品配送运输流程图解
- 腹膜透析围手术期的护理
- 虚拟实验在高中生物学实验教学中的应用研究
- 糖尿病足护理疑难病例讨论
评论
0/150
提交评论