浙江省金华市义乌市2024届数学高二第二学期期末考试模拟试题含解析_第1页
浙江省金华市义乌市2024届数学高二第二学期期末考试模拟试题含解析_第2页
浙江省金华市义乌市2024届数学高二第二学期期末考试模拟试题含解析_第3页
浙江省金华市义乌市2024届数学高二第二学期期末考试模拟试题含解析_第4页
浙江省金华市义乌市2024届数学高二第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省金华市义乌市2024届数学高二第二学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设曲线及直线所围成的封闭图形为区域,不等式组所确定的区域为,在区域内随机取一点,则该点恰好在区域内的概率为()A. B. C. D.2.已知集合,,全集,则等于()A. B. C. D.3.已知双曲线的离心率为,焦点是,,则双曲线方程为()A. B.C. D.4.已知集合A={x|x2-6x+5≤0},B={x|y=A.1,2 B.1,25.已知复数,则复数的模为()A.2 B. C.1 D.06.四大名著是中国文学史上的经典作品,是世界宝贵的文化遗产.在某学校举行的“文学名著阅读月”活动中,甲、乙、丙、丁、戊五名同学相约去学校图书室借阅四大名著《红楼梦》、《三国演义》、《水浒传》、《西游记》(每种名著至少有5本),若每人只借阅一本名著,则不同的借阅方案种数为()A. B. C. D.7.在棱长为的正方体中,如果、分别为和的中点,那么直线与所成角的大小为()A. B. C. D.8.展开式中的系数为()A.30 B.15 C.0 D.-159.已知分别为内角的对边,且成等比数列,且,则=()A. B. C. D.10.若双曲线(,)的一条渐近线被圆所截得的弦长为2,则的离心率为()A.2 B. C. D.11.《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为步和步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是()A. B. C. D.12.直线的一个方向向量是().A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数则的最大值是______.14.已知球的体积是V,则此球的内接正方体的体积为______.15.设x,y满足约束条件,则的最小值为_______.16.已知定点和曲线上的动点,则线段的中点的轨迹方程为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,,若在处与直线相切.(1)求的值;(2)求在上的极值.18.(12分)已知函数有两个极值点和3.(1)求,的值;(2)若函数的图象在点的切线为,切线与轴和轴分别交于,两点,点为坐标原点,求的面积.19.(12分)在圆上任取一点,过点作轴的垂线段,为垂足.,当点在圆上运动时,(1)求点的轨迹的方程;(2)若,直线交曲线于、两点(点、与点不重合),且满足.为坐标原点,点满足,证明直线过定点,并求直线的斜率的取值范围.20.(12分)在某地区2008年至2014年中,每年的居民人均纯收入y(单位:千元)的数据如下表:对变量t与y进行相关性检验,得知t与y之间具有线性相关关系.(1)求y关于t的线性回归方程;(2)预测该地区2016年的居民人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:,21.(12分)在数列,中,,,且,,成等差数列,,,成等比数列().(1)求,,及,,;(2)根据计算结果,猜想,的通项公式,并用数学归纳法证明.22.(10分)已知函数在点处的切线方程为.(1)求a,b的值;(2)求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】分析:求出两个区域的面积,由几何概型概率公式计算可得.详解:由题意,,∴,故选C.点睛:以面积为测度的几何概型问题是几何概型的主要问题,而积分的重要作用正是计算曲边梯形的面积,这类问题巧妙且自然地将新课标新增内容——几何概型与定积分结合在一起,是近几年各地高考及模拟中的热点题型.预计对此类问题的考查会加大力度.2、D【解题分析】

先解出集合、,再利用补集和交集的定义可得出.【题目详解】因为,即或,所以,则,应选答案D.【题目点拨】本题考查集合的交集和补集的运算,同时也涉及了二次不等式与对数不等式的解法,考查运算求解能力,属于中等题.3、A【解题分析】由题意e=2,c=4,由e=,可解得a=2,又b2=c2﹣a2,解得b2=12所以双曲线的方程为.故答案为.故答案选A.4、C【解题分析】

由题意,集合A={x|1≤x≤5},B={x|x>2},再根据集合的运算,即可求解.【题目详解】由题意,集合A={x2-6x+5≤0}={x|1≤x≤5}所以A∩B={x|2<x≤5}=(2,5],故选C.【题目点拨】本题主要考查了对数函数的性质,以及不等式求解和集合的运算问题,其中解答中正确求解集合A,B,再根据集合的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.5、C【解题分析】

根据复数的除法运算求出,然后再求出即可.【题目详解】由题意得,∴.故选C.【题目点拨】本题考查复数的除法运算和复数模的求法,解题的关键是正确求出复数,属于基础题.6、A【解题分析】

通过分析每人有4种借阅可能,即可得到答案.【题目详解】对于甲来说,有4种借阅可能,同理每人都有4种借阅可能,根据乘法原理,故共有种可能,答案为A.【题目点拨】本题主要考查乘法分步原理,难度不大.7、B【解题分析】

作出图形,取的中点,连接、,证明四边形为平行四边形,计算出的三边边长,然后利用余弦定理计算出,即可得出异面直线与所成角的大小.【题目详解】如下图所示:取的中点,连接、,、分别为、的中点,则,且,在正方体中,,为的中点,且,则,所以,四边形为平行四边形,,则异面直线与所成的角为或其补角.在中,,,.由余弦定理得.因此,异面直线与所成角的大小为.故选B.【题目点拨】本题考查异面直线所成角的计算,一般利用定义法或空间向量法计算,考查计算能力,属于中等题.8、C【解题分析】

根据的展开式的通项公式找出中函数含项的系数和项的系数做差即可.【题目详解】的展开式的通项公式为,故中函数含项的系数是和项的系数是所以展开式中的系数为-=0【题目点拨】本题考查了二项式定理的应用,熟练掌握二项式定理是解本题的关键.9、C【解题分析】因为成等比数列,所以,利用正弦定理化简得:,又,所以原式=所以选C.点睛:此题考察正弦定理的应用,要注意求角度问题时尽量将边的条件转化为角的等式,然后根据三角函数间的关系及三角形内角和的关系进行解题.10、A【解题分析】由几何关系可得,双曲线的渐近线方程为,圆心到渐近线距离为,则点到直线的距离为,即,整理可得,双曲线的离心率.故选A.点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=c2-a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).11、D【解题分析】由题意可知:直角三角向斜边长为17,由等面积,可得内切圆的半径为:落在内切圆内的概率为,故落在圆外的概率为12、D【解题分析】

先求得直线的斜率,由此求得直线的方向向量.【题目详解】直线的斜率为,故其方向向量为.故选:D【题目点拨】本小题主要考查直线的方向向量的求法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

分别在、和三种情况下求解在区间内的最大值,综合即可得到结果.【题目详解】当时,,此时:当时,,此时:当时,,此时:综上所述:本题正确结果:【题目点拨】本题考查分段函数最值的求解,关键是能够通过函数每一段区间上的解析式分别求解出在每一段区间上的最值.14、【解题分析】

设球的半径为R,球内接正方体的棱长为a,根据题意知球内接正方体的体对角线是球的直径,得出a与R的关系,再计算正方体的体积.【题目详解】设球的半径为R,球内接正方体的棱长为a,则球的体积是,又球的内接正方体的体对角线是球的直径,即,;正方体的体积为.故答案为.【题目点拨】本题主要考查了球与其内接正方体的关系,属于容易题题.15、【解题分析】

先画出可行域,根据表示可行域内的点到定点的距离的平方,即可求出最小值。【题目详解】作出不等式组表示的可行域为一个三角形区域(包括边界),表示可行域内的点到定点的距离的平方,由图可知,该距离的最小值为点到直线的距离,故.【题目点拨】本题考查线性规划,属于基础题。16、【解题分析】

通过中点坐标公式,把点的坐标转移到上,把点的坐标代入曲线方程,整理可得点的轨迹方程。【题目详解】设点的坐标为,点,因为点是线段的中点,所以解得,把点的坐标代入曲线方程可得,整理得,所以点的轨迹方程为故答案为:【题目点拨】本题考查中点坐标公式,相关点法求轨迹方程的方法,属于中档题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)极大值为,无极小值.【解题分析】

(1)求出导函数,利用切线意义可列得方程组,于是可得答案;(2)利用导函数判断在上的单调性,于是可求得极值.【题目详解】解:(1)∵函数在处与直线相切,∴,即,解得;(2)由(1)得:,定义域为.,令,解得,令,得.∴在上单调递增,在上单调递减,∴在上的极大值为,无极小值.【题目点拨】本题主要考查导数的几何意义,利用导函数求极值,意在考查学生的分析能力,转化能力和计算能力,比较基础.18、(1),;(2)【解题分析】

(1)先对函数求导,得到,根据函数极值点,结合韦达定理,即可求出结果;(2)先由(1)得到解析式,求出点,根据导函数,求出切线斜率,得到切线方程,进而求出,两点坐标,即可求出三角形面积.【题目详解】(1)由题意可得,,因为函数有两个极值点和3.所以的两根为和3.由韦达定理知,,解得,∴(2)由(1)知,,∴,所以切线的斜率所以切线的方程为:此时,,所以【题目点拨】本题主要考查由函数的极值点求参数的问题,以及求函数在某点处的切线方程,熟记导数的几何意义即可,属于常考题型.19、(1).(2).【解题分析】试题分析:(1)由相关点法得到M(x0,y0),N(x,y),则x=x0,y=(2)联立直线和椭圆得到二次方程,根据条件结合韦达定理得到,,,进而求得范围.解析:(1)设M(x0,y0),N(x,y),则x=x0,y=y0,代入圆方程有.即为N点的轨迹方程.(2)当直线垂直于轴时,由消去整理得,解得或,此时,直线的斜率为;当直线不垂直于轴时,设,直线:(),由,消去整理得,依题意,即(*),且,,又,所以,所以,即,解得满足(*),所以,故,故直线的斜率,当时,,此时;当时,,此时;综上,直线的斜率的取值范围为.点睛:本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.20、(1)(2)千元【解题分析】

(1)根据所给的数据利用最小二乘法.写出线性回归方程的系数和a的值,写出线性回归方程,注意运算过程中不要出错.(2)将2016年的年份代号t=9代入前面的回归方程,预测该地区2016年的居民人均纯收入.【题目详解】解:(1)由已知表格的数据,得,,,,∴.∴.∴y关于t的线性回归方程是.(2)由(1),知y关于t的线性回归方程是.将2016年的年份代号代入前面的回归方程,得.故预测该地区2016年的居民人均收入为千元.【题目点拨】本题考查线性回归方程,是一个基础题,解题的关键是利用最小二乘法写出线性回归系数,注意解题的运算过程不要出错.21、(1),,,,,(2)猜想,,证明见解析【解题分析】分析:(1)根据条件中,,成等差数列,,,成等比数列及所给数据求解即可.(2)用数学归纳法证明.详解:(1)由已知条件得,,由此算出,,,,,.(2)由(1)的计算可以猜想,,下面用数学归纳法证明:①当时,由已知,可得结论成立.②假设当(且)时猜想成立,即,.则当时,,,因此当时,结论也成立.由①②知,对一切都有,成立.点睛:用数学归纳法证明问题时要严格按照数学归纳法的步骤书写,特别是对初始值的验证不可省略,有时可能要取两个(或两个以上)初始值进行

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论