2024届浙江省苍南县金乡卫城中学数学高二第二学期期末质量跟踪监视模拟试题含解析_第1页
2024届浙江省苍南县金乡卫城中学数学高二第二学期期末质量跟踪监视模拟试题含解析_第2页
2024届浙江省苍南县金乡卫城中学数学高二第二学期期末质量跟踪监视模拟试题含解析_第3页
2024届浙江省苍南县金乡卫城中学数学高二第二学期期末质量跟踪监视模拟试题含解析_第4页
2024届浙江省苍南县金乡卫城中学数学高二第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省苍南县金乡卫城中学数学高二第二学期期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题是命题“若,则”的否命题;命题:若复数是实数,则实数,则下列命题中为真命题的是()A. B. C. D.2.已知的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为()A. B. C. D.3.设复数满足,则()A. B.C. D.24.如图,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有()A.72种 B.48种 C.24种 D.12种5.函数的单调递增区间是()A. B. C.(1,4) D.(0,3)6.二项式的展开式中的系数是()A. B. C. D.7.某煤气站对外输送煤气时,用1至5号五个阀门控制,且必须遵守以下操作规则:①若开启3号,则必须同时开启4号并且关闭2号;②若开启2号或4号,则关闭1号;③禁止同时关闭5号和1号.则阀门的不同开闭方式种数为()A.7 B.8 C.11 D.148.设函数,则不等式的解集为()A. B. C. D.9.复数的模是()A.3 B.4 C.5 D.710.函数的图象如图所示,下列数值排序正确的是()A.B.C.D.11.设集合M={0,1,2},则()A.1∈MB.2∉MC.3∈MD.{0}∈M12.在的展开式中,含的项的系数是()A.-10 B.5 C.10 D.-5二、填空题:本题共4小题,每小题5分,共20分。13.已知,,设,则_______.14.计算:________.15.已知一组数据1,3,2,5,4,那么这组数据的方差为____.16.已知地球半径为,地球上两个城市、,城市位于东经30°北纬45°,城市位于西经60°北纬45°,则城市、之间的球面距离为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,直线的参数方程为为参数),以原点为极点,以轴非负半轴为极轴建立极坐标系,两坐标系取相同的长度单位.曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程;(2)已知点是曲线上任一点,求点到直线距离的最大值.18.(12分)设函数f(x)是增函数,对于任意x,y∈R都有f(x+y)=f(x)+f(y).(1)求f(0);(2)证明f(x)是奇函数;(3)解不等式12f(x2)—f(x)>119.(12分)如图,已知三棱柱的侧棱与底面垂直,,,M是的中点,是的中点,点在上,且满足.(1)证明:.(2)当取何值时,直线与平面所成的角最大?并求该角最大值的正切值.(3)若平面与平面所成的二面角为,试确定P点的位置.20.(12分)已知函数.求不等式的解集;若,求实数的取值范围.21.(12分)如图所示,三棱锥中,平面,,,为上一点,,,分别为,的中点.(1)证明:;(2)求平面与平面所成角的余弦值.22.(10分)在中,角的对边分别是,且满足.(1)求角的大小;(2)若,边上的中线的长为,求的面积.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】分析:先判断命题p,q的真假,再判断选项的真假.详解:由题得命题p:若a>b,则,是假命题.因为是实数,所以所以命题q是假命题,故是真命题.故答案为D.点睛:(1)本题主要考查四个命题和复数的基本概念,考查复合命题的真假,意在考查学生对这些知识的掌握水平.(2)复合命题的真假判断口诀:真“非”假,假“非”真,一真“或”为真,两真“且”才真.2、A【解题分析】由题意可得:,由二项式系数的性质可得:奇数项的二项式系数和为.本题选择A选项.点睛:1.二项展开式的通项是展开式的第k+1项,这是解决二项式定理有关问题的基础.在利用通项公式求指定项或指定项的系数要根据通项公式讨论对k的限制.2.因为二项式定理中的字母可取任意数或式,所以在解题时根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法.3.二项式定理的应用主要是对二项展开式正用、逆用,要充分利用二项展开式的特点和式子间的联系.3、A【解题分析】由,得,故选A.4、A【解题分析】试题分析:先涂A的话,有4种选择,若选择了一种,则B有3种,而为了让C与AB都不一样,则C有2种,再涂D的话,只要与C涂不一样的就可以,也就是D有3种,所以一共有4x3x2x3=72种,故选A.考点:本题主要考查分步计数原理的应用.点评:从某一区域涂起,按要求“要求相邻的矩形涂色不同”,分步完成.5、B【解题分析】

求出函数的导数,在解出不等式可得出所求函数的单调递增区间.【题目详解】,,解不等式,解得,因此,函数的单调递增区间是,故选B.【题目点拨】本题考查函数单调区间的求解,一般是先求出导数,然后解出导数不等式,将解集与定义域取交集得出单调区间,但单调区间不能合并,考查计算能力,属于中等题.6、B【解题分析】

利用二项展开式的通项公式,令的幂指数等于,即可求出的系数.【题目详解】由题意,二项式展开式的通项公式为,令,解得,所以的系数为.故选:B【题目点拨】本题主要考查二项展开式的通项公式,考查学生计算能力,属于基础题.7、A【解题分析】

分两类解决,第一类:若开启3号,然后对2号和4号开启其中一个即可判断出1号和5号情况,第二类:若关闭3号,关闭2号关闭4号,对1号进行讨论,即可判断5号,由此可计算出结果.【题目详解】解:依题意,第一类:若开启3号,则开启4号并且关闭2号,此时关闭1号,开启5号,此时有1种方法;第二类:若关闭3号,①开启2号关闭4号或关闭2号开启4号或开启2号开启4号时,则关闭1号,开启5号,此时有种3方法;②关闭2号关闭4号,则开启1号关闭5号或开启1号开启5号或关闭1号,开启5号,此时有种3方法;综上所述,共有种方式.故选:A.【题目点拨】本题考查分类加法计数原理,属于中档题.8、B【解题分析】

∵f(﹣x)=(x2+1)+=f(x),∴f(x)为R上的偶函数,且在区间[0,+∞)上单调递减,再通过换元法解题.【题目详解】∵f(﹣x)=(x2+1)+=f(x),∴f(x)为R上的偶函数,且在区间[0,+∞)上单调递减,令t=log2x,所以,=﹣t,则不等式f(log2x)+f()≥2可化为:f(t)+f(﹣t)≥2,即2f(t)≥2,所以,f(t)≥1,又∵f(1)=2+=1,且f(x)在[0,+∞)上单调递减,在R上为偶函数,∴﹣1≤t≤1,即log2x∈[﹣1,1],解得,x∈[,2],故选B.【题目点拨】本题主要考查了对数型复合函数的性质,涉及奇偶性和单调性的判断及应用,属于中档题.9、C【解题分析】

直接利用复数的模的定义求得的值.【题目详解】|,故选:C.【题目点拨】本题主要考查复数的模的定义和求法,属于基础题.10、B【解题分析】

根据已知条件可以把转化为即为函数在为和对应两点连线的斜率,且,是分别为时对应图像上点的切线斜率,再结合图像即可得到答案.【题目详解】,是分别为时对应图像上点的切线斜率,,为图像上为和对应两点连线的斜率,(如图)由图可知,故选:B【题目点拨】本题考查了导数的几何意义以及斜率公式,比较斜率大小,属于较易题.11、A【解题分析】解:由题意,集合M中含有三个元素0,1,1.∴A选项1∈M,正确;B选项1∉M,错误;C选项3∈M,错误,D选项{0}∈M,错误;故选:A.【点评】本题考查了元素与集合关系的判定,一个元素要么属于集合,要么不属于这个集合,二者必居其一,这就是集合中元素的确定性.12、A【解题分析】

根据,把按二项式定理展开,可得含的项的系数,得到答案.【题目详解】由题意,在的展开中为,所以含的项的系数,故选A.【题目点拨】本题主要考查了二项式定理的应用,二项展开式的通项公式,二项式系数的性质,着重考查了推理与运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

对求导,代值计算可得.【题目详解】,又,故答案为:【题目点拨】本题考查导数运算.导数运算法则(1);(2);(3)()14、【解题分析】

计算出和的值,代入即可计算出结果.【题目详解】由题意得,故答案为.【题目点拨】本题考查三角函数值的计算,解题的关键在于将特殊角的三角函数值计算出来,考查计算能力,属于基础题.15、2;【解题分析】

先求这组数据的平均数,再代入方差公式,求方差.【题目详解】因为,方差.【题目点拨】本题考查平均数与方差公式的简单应用,考查基本的数据处理能力.16、【解题分析】

欲求坐飞机从A城市飞到B城市的最短距离,即求出地球上这两点间的球面距离即可.A、B两地在同一纬度圈上,计算经度差,求出AB弦长,以及球心角,然后求出球面距离.即可得到答案.【题目详解】由已知地球半径为R,则北纬45°的纬线圈半径为,

又∵两座城市的经度分别为东经30°和西经60°,

故连接两座城市的弦长,

则A,B两地与地球球心O连线的夹角,

则A、B两地之间的距离是.

故答案为:.【题目点拨】本题考查球面距离及其他计算,考查空间想象能力,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);;(2)【解题分析】

(1)消参数得的普通方程,根据得的直角坐标方程(2)根据直线与圆位置关系得最值.【题目详解】(1)因为,所以,即(2)因为圆心到直线距离为,所以点到直线距离的最大值为【题目点拨】本题考查参数方程化普通方程、极坐标方程化直角坐标方程以及直线与圆位置关系,考查综合分析求解能力,属中档题.18、(1)0;(2)见解析;(3){x|x<0或x>5}【解题分析】

试题分析:(1)利用已知条件通过x=y=0,直接求f(0);(2)通过函数的奇偶性的定义,直接证明f(x)是奇函数;(3)利用已知条件转化不等式.通过函数的单调性直接求解不等12试题解析:(1)令x=y=0,得f(0)=f(0+0)=f(0)+f(0),∴f(0)=0定义域关于原点对称y=-x,得f(x)+f(-x)=f(0)=0,∴f(-x)=f(x)∴f(x)是奇函数12f(即f又由已知得:f(2x)=2f由函数f(x∴不等式的解集{x|x<0或x>5}.考点:抽象函数及其应用;函数单调性的性质;函数奇偶性的判断;其他不等式的解法.【方法点睛】解决抽象函数问题常用方法:1.换元法:换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法;2.方程组法:运用方程组通过消参、消元的途径也可以解决有关抽象函数的问题;3.待定系数法:如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题;4.赋值法:有些抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决;5.转化法:通过变量代换等数学手段将抽象函数具有的性质与函数的单调性等定义式建立联系,为问题的解决带来极大的方便;6.递推法:对于定义在正整数集N*上的抽象函数,用递推法来探究,如果给出的关系式具有递推性,也常用递推法来求解;7.模型法:模型法是指通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法;应掌握下面常见的特殊模型:19、(1)见解析;(2)见解析;(3)见解析【解题分析】

(1)以AB,AC,分别为,,轴,建立空间直角坐标系,求出各点的坐标及对应向量的坐标,易判断,即;(2)设出平面ABC的一个法向量,我们易表达出,然后利用正弦函数的单调性及正切函数的单调性的关系,求出满足条件的值,进而求出此时的正线值;(3)平面PMN与平面ABC所成的二面角为,则平面PMN与平面ABC法向量的夹角余弦值的绝对值为,代入向量夹角公式,可以构造一个关于的方程,解方程即可求出对应值,进而确定出满足条件的点P的位置.【题目详解】(1)证明:如图,以AB,AC,分别为,,轴,建立空间直角坐标系.则,,,从而,,,所以.(2)平面ABC的一个法向量为,则(※).而,当最大时,最大,无意义,除外,由(※)式,当时,,.(3)平面ABC的一个法向量为.设平面PMN的一个法向量为,由(1)得.由得,解得,令,得,∵平面PMN与平面ABC所成的二面角为,∴,解得.故点P在的延长线上,且.【题目点拨】本题考查的知识点是向量评议表述线线的垂直、平等关系,用空间向量求直线与平面的夹角,用空间向量求平面间的夹角,其中熟练掌握向量夹角公式是解答此类问题的关键.20、(1)(2)【解题分析】

(1)可先将写成分段函数的形式,从而求得解集;(2)等价于,令,故即可,从而求得答案.【题目详解】(1)根据题意可知:,当时,即,解得;当时,即,解得;当时,即,解得.综上,不等式的解集为;(2)等价于,令,故即可,①当时,,此时;②当时,,此时;当时,,此时;综上所述,,故,即实数的取值范围是.【题目点拨】本题主要考查绝对值不等式的求解,含参恒成立问题,意在考查学生的分析能力,计算能力及分类讨论能力,难度中等.21、(1)见解析;(2)见解析.【解题分析】分析:由PA=AC=AB,N为AB上一点,AB=4AN,我们不妨令PA=1,然后以A为原点,射线AB,AC,AP分别为x,y,z轴正向建立空间直角坐标系.由此不难得到各点的坐标(1)要证明CM⊥SN,我们可要证明即可,根据向量数量积的运算,我们不难证明;(2)要求平面与平面CMN所成角的大小,我们只要利用求向量夹角的方法,求出平面与平面CMN的法向量的夹角,再由它们之间的关系,易求出平面与平面CMN所成角的大小.详解:设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论