版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
拉萨市2024届数学高二下期末调研试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法总数是A.210B.336C.84D.3432.已知,,复数,则()A. B.1 C.0 D.23.甲乙等人参加米接力赛,在甲不跑第一棒的条件下,乙不跑第二棒的概率是()A. B. C. D.4.已知分别为内角的对边,且成等比数列,且,则=()A. B. C. D.5.在打击拐卖儿童犯罪的活动中,警方救获一名男孩,为了确定他的家乡,警方进行了调查:知情人士A说,他可能是四川人,也可能是贵州人;知情人士B说,他不可能是四川人;知情人士C说,他肯定是四川人;知情人士D说,他不是贵州人.警方确定,只有一个人的话不可信.根据以上信息,警方可以确定这名男孩的家乡是()A.四川 B.贵州C.可能是四川,也可能是贵州 D.无法判断6.在一个棱长为的正方体的表面涂上颜色,将其适当分割成棱长为的小正方体,全部放入不透明的口袋中,搅拌均匀后,从中任取一个,取出的小正方体表面仅有一个面涂有颜色的概率是()A. B. C. D.7.已知椭圆的左右焦点分别,,焦距为4,若以原点为圆心,为直径的圆恰好与椭圆有两个公共点,则此椭圆的方程为()A. B.C. D.8.甲、乙两人独立地解同一问题,甲解决这个问题的概率是,乙解决这个问题的概率是,那么恰好有1人解决这个问题的概率是()A. B.C. D.9.对于实数,,若或,则是的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件10.已知函数y=f(x)是定义域为R的偶函数.当x≥0时,f(x)=116x2(0≤x≤2)(12)x(x>2),若关于x的方程[f(xA.(-∞,-C.(-1211.设函数为自然对数的底数)在上单调递增,则实数的取值范围为()A. B. C. D.12.若函数的图像如下图所示,则函数的图像有可能是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在正数数列an中,a1=1,且点an,an-1n≥2在直线14.向量,,在正方形网格(每个小正方形的边长为1)中的位置如图所示,若向量与共线,则________.15.已知为抛物线:的焦点,过且斜率为的直线交于,两点,设,则_______.16.若=,则x的值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,.(1)若曲线在处的切线与直线垂直,求实数的值;(2)设,若对任意两个不等的正数,都有恒成立,求实数的取值范围;18.(12分)设对于任意实数x,不等式|x+7|+|x-1|≥m恒成立.(1)求m的取值范围;(2)当m取最大值时,解关于x的不等式|x-3|-2x≤2m-12.19.(12分)某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益(单位:万元)绘制成如图所示的频率分布直方图.由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的.广告投入/万元12345销售收益/万元23257(Ⅰ)根据频率分布直方图计算图中各小长方形的宽度;(Ⅱ)该公司按照类似的研究方法,测得另外一些数据,并整理得到上表:表中的数据显示与之间存在线性相关关系,求关于的回归方程;(Ⅲ)若广告投入万元时,实际销售收益为万元,求残差.附:,20.(12分)已知函数,.(1)求的值;(2)求的最小正周期;(3)求的最大值及取得最大值的x的集合.21.(12分)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)把的参数方程化为极坐标方程:(2)求与交点的极坐标.22.(10分)已知某厂生产的电子产品的使用寿命(单位:小时)服从正态分布,且,.(1)现从该厂随机抽取一件产品,求其使用寿命在的概率;(2)现从该厂随机抽取三件产品,记抽到的三件产品使用寿命在的件数为,求的分布列和数学期望.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
由题意知本题需要分组解决,共有两种情况,对于7个台阶上每一个只站一人,若有一个台阶有2人另一个是1人,根据分类计数原理得到结果.【题目详解】由题意知本题需要分组解决,∵对于7个台阶上每一个只站一人有A73种;若有一个台阶有2人另一个是1人共有C31A72种,∴根据分类计数原理知共有不同的站法种数是A73+C31A72=336种.故答案为:B.【题目点拨】分类要做到不重不漏,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.分步要做到步骤完整﹣﹣完成了所有步骤,恰好完成任务.2、B【解题分析】分析:先将等式右边化简,然后根据复数相等的条件即可.详解:故选B.点睛:考查复数的除法运算和复数相等的条件,属于基础题.3、D【解题分析】由题得甲不跑第一棒的总的基本事件有个,甲不跑第一棒,乙不跑第二棒的基本事件有,由古典概型的概率公式得在甲不跑第一棒的条件下,乙不跑第二棒的概率是.故选D.4、C【解题分析】因为成等比数列,所以,利用正弦定理化简得:,又,所以原式=所以选C.点睛:此题考察正弦定理的应用,要注意求角度问题时尽量将边的条件转化为角的等式,然后根据三角函数间的关系及三角形内角和的关系进行解题.5、A【解题分析】
先确定B,C中必有一真一假,再分析出A,D两个正确,男孩为四川人.【题目详解】第一步,找到突破口B和C的话矛盾,二者必有一假.第二步,看其余人的话,A和D的话为真,因此男孩是四川人.第三步,判断突破口中B,C两句话的真假,C的话为真,B的话为假,即男孩为四川人.故选:A【题目点拨】本题主要考查分析推理,意在考查学生对该知识的理解掌握水平,属于基础题.6、C【解题分析】
由在27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面仅有一个面涂有颜色,有6种结果,根据古典概型及其概率的计算公式,即可求解.【题目详解】由题意,在27个小正方体中,恰好有三个面都涂色有颜色的共有8个,恰好有两个都涂有颜色的共12个,恰好有一个面都涂有颜色的共6个,表面没涂颜色的1个,可得试验发生包含的事件是从27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面仅有一个面涂有颜色,有6种结果,所以所求概率为.故选:C.【题目点拨】本题主要考查了古典概型及其概率的计算公式的应用,其中解答根据几何体的结构特征,得出基本事件的总数和所求事件所包含基本事件的个数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.7、A【解题分析】
已知,又以原点为圆心,为直径的圆恰好与椭圆有两个公共点,这两个公共点只能是椭圆短轴的顶点,从而有,于是可得,从而得椭圆方程。【题目详解】∵以原点为圆心,为直径的圆恰好与椭圆有两个公共点,∴这两个公共点只能是椭圆短轴的顶点,∴,又即,∴,∴椭圆方程为。故选:A。【题目点拨】本题考查椭圆的标准方程,解题关键时确定的值,本题中注意椭圆的对称轴,从而确定关系。8、B【解题分析】分析:先分成两个互斥事件:甲解决问题乙未解决问题和甲解决问题乙未解决问题,再分别求概率,最后用加法计算.详解:因为甲解决问题乙未解决问题的概率为p1(1-p2),甲未解决问题乙解决问题的概率为p2(1-p1),则恰有一人解决问题的概率为p1(1-p2)+p2(1-p1).故选B.点睛:本题考查互斥事件概率加法公式,考查基本求解能力.9、B【解题分析】
分别判断充分性和必要性,得到答案.【题目详解】取此时不充分若或等价于且,易知成立,必要性故答案选B【题目点拨】本题考查了充分必要条件,举出反例和转化为逆否命题都可以简化运算.10、B【解题分析】
根据题意,由函数f(x)的解析式以及奇偶性分析可得f(x)的最小值与极大值,要使关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且只有6个不同实数根,转化为t2+at+b=0必有两个根【题目详解】根据题意,当x≥0时,f(x)=1f(x)在(0,2)上递增,在(2,+∞)上递减,当x=2时,函数当x=0时,函数f(x)取得最小值0,又由函数为偶函数,则f(x)在(-∞,-2)上递增,在当x=-2时,函数f(x)取得极大值14当x=0时,函数f(x)取得最小值0,要使关于x的方程[f(x)]设t=f(x),则t2+at+b=0必有两个根t1且必有t1=14,y=0<t2<14,y关于x的方程[f(x)]可得1又由-a=t则有-12<a<-【题目点拨】函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数y=f(x)-g(x)的零点⇔函数y=f(x)-g(x)在x轴的交点⇔方程f(x)-g(x)=0的根⇔函数y=f(x)与y=g(x)的交点.11、D【解题分析】
根据单调性与导数的关系,有在上恒成立,将恒成立问题转化成最值问题,利用导数,研究的单调性,求出最小值,即可得到实数的取值范围。【题目详解】依题意得,在上恒成立,即在上恒成立,设,令,,,所以,,,故选D。【题目点拨】本题主要考查函数单调性与导数的关系,将函数在某区间单调转化为导数或者的恒成立问题,再将其转化为最值问题,是解决此类问题的常规思路。12、A【解题分析】
根据函数图象的增减性与其导函数的正负之间的关系求解。【题目详解】由的图象可知:在,单调递减,所以当时,在,单调递增,所以当时,故选A.【题目点拨】本题考查函数图象的增减性与其导函数的正负之间的关系,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】
在正数数列an中,由点an,an-1在直线x-2y=0上,知a【题目详解】由题意,在正数数列an中,a1=1,且a可得an-2即an因为a1=1,所以数列所以Sn故答案为2n【题目点拨】本题主要考查了等比数列的定义,以及等比数列的前n项和公式的应用,同时涉及到数列与解析几何的综合运用,是一道好题.解题时要认真审题,仔细解答,注意等比数列的前n项和公式和通项公式的灵活运用,着重考查了推理与运算能力,属于中档试题.14、【解题分析】
建立平面直角坐标系,从而得到的坐标,这样即可得出的坐标,根据与共线,可求出,从而求出的坐标,即得解.【题目详解】建立如图所示平面直角坐标系,则:;与共线故答案为:【题目点拨】本题考查了平面向量线性运算和共线的坐标表示,考查了学生概念理解,数形结合,数学运算的能力,属于中档题.15、【解题分析】
直接写出直线方程,与抛物线方程联立方程组解得交点的横坐标,再由焦半径公式得出,求比值即得。【题目详解】联立,可得,解得,所以,故答案为:。【题目点拨】本题考查直线与抛物线相交问题,考查焦半径公式。解题方法是直接法,即解方程组得交点坐标。16、4或9.【解题分析】分析:先根据组合数性质得,解方程得结果详解:因为=,所以因此点睛:组合数性质:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1).(2).【解题分析】分析:(1)由题意,求得,得到方程,即可求解实数的值;(2)由题意,对任意两个不等的正数,都有恒成立,设,则即恒成立,问题等价于函数在上为增函数,利用导数即可额求解.详解:(1)由,得.由题意,,所以.(2).因为对任意两个不等的正数,都有恒成立,设,则即恒成立.问题等价于函数,即在上为增函数,所以在上恒成立.即在上恒成立.所以,即实数的取值范围是.点睛:本题主要考查导数在函数中的应用,以及不等式的证明,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.18、(1)(2)【解题分析】试题分析:解:(1)根据题,由于不等式|x+7|+|x-1|≥m恒成立,则可知|x+7|+|x-1|≥|x+7-x+1|≥8故2)由已知,不等式化为或由不等式组解得:由不等式组解得:原不等式的解集为考点:绝对值不等式点评:主要是考查了绝对值不等式的求解以及不等式的恒成立问题的运用,属于基础题.19、(1).(2).(3).【解题分析】分析:(Ⅰ)设各小长方形的宽度为,由频率直方图各小长方形的面积总和为,可得,从而可得结果;(Ⅱ)利用平均数公式求出平均数、利用样本中心的性质结合公司可求得回归系数,从而可写出线性回归方程;(Ⅲ)计算当时,销售收益预测值,再求残差值.详解:(Ⅰ)设各小长方形的宽度为,由频率直方图各小长方形的面积总和为,可知,故.(Ⅱ)由题意,可知,,,,根据公式,可求得,,所以关于的回归方程为.(Ⅲ)当时,销售收益预测值(万元),又实际销售收益为万元,所以残差点睛:求回归直线方程的步骤:①确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 文明讲话稿(集合15篇)
- 土地租聘合同
- 网上电子合同
- 防水涂料合同
- 超市的劳动合同
- 公司间签合同
- 商品房买卖补充合同
- 制梁承包合同
- 付款协议合同
- 音响销售合同
- 2025年医疗机构输血科(血库)基本标准(试行)
- 2025年高考英语新课标I卷真题及答案
- 2025云南昆明市五华区人民法院招聘合同制司法辅助人员及合同制司法警务辅助人员13人备考考试题库附答案解析
- 兄弟BAS-311G电脑花样机说明书
- 烟草行业新员工入职培训
- 审计咨询服务整体方案
- 《土木工程智能施工》课件 第3章 土方作业辅助工程-土壁支护2
- 中层复合酸在皮肤美容中的应用专家共识(2025)解读 2
- 2025算力并网技术要求
- 2025年蓝海新材料(通州湾)有限责任公司秋季高校毕业生招聘80人笔试参考题库附带答案详解
- (正式版)DB1501∕T 0021-2021 《园林绿地分级养护技术规程》
评论
0/150
提交评论