2024届重庆市万州区数学高二第二学期期末监测试题含解析_第1页
2024届重庆市万州区数学高二第二学期期末监测试题含解析_第2页
2024届重庆市万州区数学高二第二学期期末监测试题含解析_第3页
2024届重庆市万州区数学高二第二学期期末监测试题含解析_第4页
2024届重庆市万州区数学高二第二学期期末监测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届重庆市万州区数学高二第二学期期末监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是定义在上的偶函数,且,当时,,则不等式的解集是()A. B. C. D.以上都不正确2.已知:,方程有1个根,则不可能是()A.-3 B.-2 C.-1 D.03.下面由火柴棒拼出的一列图形中,第n个图形由n个正方形组成.通过观察可以发现第10个图形中火柴棒的根数是()A.30 B.31 C.32 D.344.已知,则的值是A. B. C. D.5.已知某随机变量服从正态分布,且,则()A. B. C. D.6.对于两个平面和两条直线,下列命题中真命题是()A.若,则 B.若,则C.若,则 D.若,则7.在的展开式中,含项的系数为()A.10 B.15 C.20 D.258.变量与的回归模型中,它们对应的相关系数的值如下,其中拟合效果最好的模型是()模型12340.480.150.960.30A.模型1 B.模型2 C.模型3 D.模型49.已知双曲线mx2-yA.y=±24x B.y=±210.已知命题p:,.则为().A., B.,C., D.,11.在中,已知,,则的最大值为()A. B. C. D.12.某班上午有五节课,计划安排语文、数学、英语、物理、化学各一节,要求语文与化学相邻,且数学不排第一节,则不同排法的种数为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的方程为,为坐标原点,,为抛物线上的点,若为等边三角形,且面积为,则的值为__________.14.平面直角坐标系中点(1,2)到直线的距离为_________15.在正四面体O-ABC中,,D为BC的中点,E为AD的中点,则=______________(用表示).16.若一个圆锥的侧面展开图是面积为的半圆面,则该圆锥的体积为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)若,解关于的不等式.18.(12分)已知函数,.(1)当时,求函数的最小值;(2)若函数在区间上单调递增,求实数a的取值范围.19.(12分)在平面四边形中,,,,.(1)求;(2)若,求四边形的面积.20.(12分)如图,已知三棱柱的侧棱与底面垂直,,分别是的中点.(1)求异面直线与所成角的余弦值;(2)求二面角的余弦值.21.(12分)已知数列满足,且.(1)设,求证数列是等比数列;(2)设,求数列的前项和.22.(10分)已知曲线在处的切线方程为.(Ⅰ)求值.(Ⅱ)若函数有两个零点,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】令,则当时:,即函数在上单调递增,由可得:当时,;当时,;不等式在上的解集为,同理,不等式在上的解集为,综上可得:不等式的解集是.2、D【解题分析】

由题意可得,可令,求得导数和单调性、最值,运用排除法即可得到所求结论.【题目详解】,方程有1个根,可得,可令,,可得时,,递增;时,,递减,可得时,取得最大值,且时,,若时,,可得舍去,方程有1个根;若时,,可得,方程有1个根;若时,,可得,方程有1个根;若时,,无解方程没有实根.故选D.【题目点拨】本题考查函数方程的转化思想,以及换元法和导数的运用:求单调性和极值、最值,考查化简运算能力,属于中档题.3、B【解题分析】每个图形中火柴棒的根数构成一个等差数列,首项为4,公差为3.其数列依次为4,7,10,13,…,所以第10个图形中火柴棒的根数为.4、D【解题分析】,,又,故选D.5、A【解题分析】

直接利用正态分布曲线的对称性求解.【题目详解】,且,..故选:A.【题目点拨】本题考查正态分布曲线的特点及曲线所表示的意义,考查正态分布中两个量和的应用,考查曲线的对称性,属于基础题.6、D【解题分析】

根据线面平行垂直的位置关系判断.【题目详解】A中可能在内,A错;B中也可能在内,B错;与可能平行,C错;,则或,若,则由得,若,则内有直线,而易知,从而,D正确.故选D.【题目点拨】本题考查线面平行与垂直的关系,在说明一个命题是错误时可举一反例.说明命题是正确时必须证明.7、B【解题分析】分析:利用二项展开式的通项公式求出的第项,令的指数为2求出展开式中的系数.然后求解即可.详解:6展开式中通项

令可得,,

∴展开式中x2项的系数为1,

在的展开式中,含项的系数为:1.

故选:B.点睛:本题考查二项展开式的通项的简单直接应用.牢记公式是基础,计算准确是关键.8、C【解题分析】分析:根据相关系数的性质,最大,则其拟合效果最好,进行判断即可.详解:线性回归分析中,相关系数为r,越接近于1,相关程度越大;

越小,相关程度越小,

∵模型3的相关系数最大,∴模拟效果最好,

故选:A.点睛:本题主要考查线性回归系数的性质,在线性回归分析中,相关系数为r,越接近于1,相关程度越大;越小,相关程度越小.9、A【解题分析】x21m-y2=1,c=1m+1=310、C【解题分析】

因为特称命题的否定是全称命题,即改变量词又否定结论,所以p:,的否定:.故选C.11、C【解题分析】

由题知,先设,再利用余弦定理和已知条件求得和的关系,设代入,利用求出的范围,便得出的最大值.【题目详解】由题意,设的三边分别为,由余弦定理得:,因为,,所以,即,设,则,代入上式得:,,所以.当时,符合题意,所以的最大值为,即的最大值为.故选:C.【题目点拨】本题主要考查运用的余弦定理求线段和得最值,转化成一元二次方程,以及根的判别式大于等于0求解.12、B【解题分析】

先用捆绑法将语文与化学看成一个整体,考虑其顺序;将这个整体与英语,物理全排列,分析排好后的空位数目,再在空位中安排数学,最后由分步计数原理计算可得.【题目详解】由题得语文和化学相邻有种顺序;将语文和化学看成整体与英语物理全排列有种顺序,排好后有4个空位,数学不在第一节有3个空位可选,则不同的排课法的种数是,故选B.【题目点拨】本题考查分步计数原理,属于典型题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】设,,∵,∴.又,,∴,即.又、与同号,∴.∴,即.根据抛物线对称性可知点,关于轴对称,由为等边三角形,不妨设直线的方程为,由,解得,∴.∵的面积为,∴,解得,∴.答案:2点睛:本题考查抛物线性质的运用,解题的关键是根据条件先判断得到点A,B关于x轴对称,然后在此基础上得到直线直线(或)的方程,通过解方程组得到点(或A)的坐标,求得等边三角形的边长后,根据面积可得.14、【解题分析】

根据点到直线的距离公式完成计算即可.【题目详解】因为点为,直线为,所以点到直线的距离为:.故答案为:.【题目点拨】本题考查点到直线距离公式的运用,难度较易.已知点,直线,则点到直线的距离为:.15、【解题分析】因为在四面体中,为的中点,为的中点,,故答案为.16、【解题分析】

由面积为的半圆面,可得圆的半径为2,即圆锥的母线长为2.圆锥的底面周长为.所以底面半径为1.即可得到圆锥的高为.所以该圆锥的体积为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、见解析【解题分析】

本题是含有参数的解不等式,可以先将不等式转化为的形式,再通过分类讨论参数得出解.【题目详解】时,且;时,等价于因为,所以,所以不等式可化简为当时,或.当时,,或综上所述,时,且;0时或时,或}【题目点拨】在解含有参数的不等式的时候,一定要注意参数的取值范围并进行分类讨论.18、(1)4;(2).【解题分析】

(1)当时,分别讨论每一段的单调性,综合比较,即可求得最小值;(2)去掉绝对值符号,化为分段函数,因为函数是连续的,只需要函数在两段上都单调递增,即可得解.【题目详解】(1)当时,,当时,为减函数,;当时,为减函数,当时,函数取得最小值;当时,为增函数,;所以当时,函数取得最小值.(2),因为函数在区间上单调递增,且函数是连续不间断的,所以,解得,故所求实数a的取值范围是.【题目点拨】本题考查分段函数的最值问题,考查根据函数的单调性求参数的取值范围,考查分类讨论的数学思想,属于中档题.已知分段函数的单调性求参数的取值范围时,除了考虑分段函数在每一段上的单调性必须相同之外,还要考虑函数在分界点处的函数值的大小关系,因此,解题时要考虑全面,否则会产生解题中的错误.19、(1)(2)【解题分析】

(1)在中由余弦定理得,再由正弦定理能求出;(2),四边形ABCD的面积,由此能求出结果.【题目详解】(1)在平面四边形中,,,,.中,由余弦定理可得:,∵,∴.(2)中,,【题目点拨】本题考查角的正弦值、四边形面积的求法,考查正弦定理、余弦定理等基础知识,考查运算求解能力,是中档题.20、(1);(2).【解题分析】

(1)以分别为轴建立空间直角坐标系,计算直线对应向量,根据向量夹角公式得到答案.(2)分别计算两个平面的法向量,利用法向量的夹角计算二面角余弦值.【题目详解】(1)如图,以分别为轴建立空间直角坐标系,则,,异面直线与所成角的余弦值为.(2)平面的一个法向量为.设平面的一个法向量为,由得,,不妨取则,,,二面角的余弦值为.【题目点拨】本题考查了空间直角坐标系的应用,求异面直线夹角和二面角,意在考查学生的计算能力和空间想象能力.21、(1)详见解析(2)【解题分析】

(1)由已知数列递推式可得,又,得,从而可得数列是等比数列;

(2)由(1)求得数列的通项公式,得到数列的通项公式,进一步得到,然后分类分组求数列的前项和.【题目详解】(1)由已知得代入得又,所以数列是等比数列(2)由(1)得,,因为,,,且时,所以当时,当时,.所以【题目点拨】本题考查数列递推式,考查等比关系的确定,训练了数列的分组求和,属中档题.22、(Ⅰ);(Ⅱ)【解题分析】

(Ⅰ)利切点为曲线和直线的公共点,得出,并结合列方程组求出实数、的值;(Ⅱ)解法1:由,得出,将问题转化为直线与曲线的图象有两个交点时,求出实数的取值范围,然后利用导数研究函数的单调性与极值,借助数形结合思想得出实数的取值范围;解法2:利用导数得出函数的极小值为,并利用极限思想得出

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论