2024届北京海淀北京科技大学附属中学数学高二下期末教学质量检测模拟试题含解析_第1页
2024届北京海淀北京科技大学附属中学数学高二下期末教学质量检测模拟试题含解析_第2页
2024届北京海淀北京科技大学附属中学数学高二下期末教学质量检测模拟试题含解析_第3页
2024届北京海淀北京科技大学附属中学数学高二下期末教学质量检测模拟试题含解析_第4页
2024届北京海淀北京科技大学附属中学数学高二下期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届北京海淀北京科技大学附属中学数学高二下期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列四个命题中真命题是()A.同垂直于一直线的两条直线互相平行B.底面各边相等,侧面都是矩形的四棱柱是正四棱柱C.过空间任一点与两条异面直线都垂直的直线有且只有一条D.过球面上任意两点的大圆有且只有一个2.设集合,则A. B. C. D.3.已知双曲线:的左、右焦点分别为,,以线段为直径的圆与双曲线的渐近线在第一象限的交点为,且满足,则的离心率满足()A. B. C. D.4.用,,,,这个数字组成没有重复数字的三位数,其中偶数共有()A.个 B.个 C.个 D.个5.利用独立性检验的方法调查高中生的写作水平与离好阅读是否有关,随机询问120名高中生是否喜好阅读,利用2×2列联表,由计算可得K2=4.236P(K2≥k0)0.150.100.050.0250.0100.0050.001k02.0722.7063.8415.0246.6357.87910.828参照附表,可得正确的结论是()A.有95%的把握认为“写作水平与喜好阅读有关”B.有97.5%的把握认为“写作水平与喜好阅读有关”C.有95%的把握认为“写作水平与喜好阅读无关”D.有97.5%的把握认为“写作水平与喜好阅读无关”6.已知高为的正三棱锥的每个顶点都在半径为的球的球面上,若二面角的正切值为4,则()A. B. C. D.7.设随机变量服从分布,且,,则()A., B.,C., D.,8.给出下列三个命题:(1)如果一个平面内有无数条直线平行于另一个平面,则这两个平面平行;(2)一个平面内的任意一条直线都与另一个平面不相交,则这两个平面平行;(3)一个平面内有不共线的三点到另一个平面的距离相等,则这两个平面平行;其中正确命题的个数是()A.0 B.1 C.2 D.39.函数图象交点的横坐标所在区间是()A.(1,2) B.(2,3) C.(3,4) D.(1,5)10.已知是虚数单位,若复数满足,则的虚部为()A.-1 B. C.1 D.-311.设直线与圆交于A,B两点,圆心为C,若为直角三角形,则()A.0 B.2 C.4 D.0或412.已知数列满足(,且是递减数列,是递增数列,则A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知三棱锥的四个顶点都在球的球面上,且球的表面积为,,平面,,则三棱锥的体积为__________.14.“∀x∈R,x2+2x+1>015.已知是实系数一元二次方程的一个虚数根,且,则实数的取值范围是________.16.我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周盒体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式中“…”既代表无限次重复,但原式却是个定值,它可以通过方程求得,类似上述过程,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(为常数).(1)当时,讨论函数的单调性;(2)当时,若函数在上单调递增,求的取值范围.18.(12分)已知函数是定义在上的不恒为零的函数,对于任意非零实数满足,且当时,有.(Ⅰ)判断并证明的奇偶性;(Ⅱ)求证:函数在上为增函数,并求不等式的解集.19.(12分)2018年至2020年,第六届全国文明城市创建工作即将开始.在2017年9月7日召开的攀枝花市创文工作推进会上,攀枝花市委明确提出“力保新一轮提名城市资格、确保2020年创建成功”的目标.为了确保创文工作,今年初市交警大队在辖区开展“机动车不礼让行人整治行动”.下表是我市一主干路口监控设备抓拍的5个月内“驾驶员不礼让斑马线”行为统计数据:月份违章驾驶员人数(Ⅰ)请利用所给数据求违章人数与月份之间的回归直线方程;(Ⅱ)预测该路口7月份不“礼让斑马线”违章驾驶员的人数;(Ⅲ)交警从这5个月内通过该路口的驾驶员中随机抽查了50人,调查“驾驶员不礼让斑马线”行为与驾龄的关系,得到如下列联表:不礼让斑马线礼让斑马线合计驾龄不超过年驾龄年以上合计能否据此判断有97.5%的把握认为“礼让斑马线”行为与驾龄有关?20.(12分)已知函数为定义在上的奇函数,且当时,(Ⅰ)求函数的解析式;(Ⅱ)求函数在区间上的最小值.21.(12分)设,.(Ⅰ)如果存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求满足上述条件的最大整数M;(Ⅱ)如果对于任意的都有f(s)≥g(t)成立,求实数a的取值范围.22.(10分)选修4—5:不等式选讲设函数.(1)若,求不等式的解集;(2)若关于的不等式恒成立,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

通过“垂直于同一直线的两条直线的位置关系不确定”可判断A是否正确;通过“底面各边相等,侧面都是矩形的四棱柱底面不一定是正方形”可判断B是否正确;通过“两条异面直线的公垂线是唯一的,所以经过空间任一点与两条异面直线都垂直的直线有且只有一条”可判断C是否正确;通过“经过球面上任意两点的大圆有无数个”可判断D是否正确。【题目详解】A项:垂直于同一直线的两条直线不一定互相平行,故A错;B项:底面各边相等,侧面都是矩形的四棱柱是直四棱柱,不一定是正四棱柱,故B错;C项:两条异面直线的公垂线是唯一的,所以经过空间任一点与两条异面直线都垂直的直线有且只有一条,故C正确;D项:过球面上任意两点的大圆有无数个,故D错,故选C项。【题目点拨】本题考查了命题真假的判定以及解析几何的相关性质,考查了推理能力,考查了数形结合思想,属于基础题,在进行解析几何的相关性质的判断时,可以根据图像来判断。2、A【解题分析】由题意,故选A.点睛:集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图.3、D【解题分析】分析:联立圆与渐近线方程,求得M的坐标,由,得点在双曲线右支上,代入双曲线方程化简即可求.详解:由,得,即,由,,即由,化简得,即,故选D.点睛:本题考查双曲线的简单几何性质,点到直线的距离公式,考查计算能力,属于中档题.4、B【解题分析】

利用分类计数原理,个位数字为时有;个位数字为或时均为,求和即可.【题目详解】由已知得:个位数字为的偶数有,个位数字为的偶数为,个位数字为的偶数有,所以符合条件的偶数共有.故选:B【题目点拨】本题考查了分类计数运算、排列、组合,属于基础题.5、A【解题分析】

根据题意知观测值,对照临界值得出结论.【题目详解】利用独立性检验的方法求得,对照临界值得出:有95%的把握认为“写作水平与喜好阅读有关”.故选A项.【题目点拨】本题考查了独立性检验的应用问题,是基础题.6、D【解题分析】

过作平面于,为中点,连接.证明面角的平面角为,计算得到,通过勾股定理计算得到答案.【题目详解】如图:正三棱锥,过作平面于,为中点,连接.易知:为中点二面角的平面角为正切值为4在中,根据勾股定理:故答案选D【题目点拨】本题考查了三棱锥的外接球,二面角,意在考查学生的计算能力和空间想象能力.7、A【解题分析】分析:根据随机变量符合二项分布,根据二项分布的期望和方差公式得到关于的方程组,注意两个方程之间的关系,把一个代入另一个,以整体思想来解决,求出P的值,再求出n的值,得到结果.详解:随机变量服从分布,且,,①②即可求得,.故选:A点睛:本题考查离散型随机变量的期望和方差,考查二项分布的期望和方差公式,考查方差思想,是一个比较好的题目,技巧性比较强.8、B【解题分析】

根据面面平行的位置关系的判定依次判断各个命题的正误,从而得到结果.【题目详解】(1)若一个平面内有无数条互相平行的直线平行于另一个平面,两个平面可能相交,则(1)错误;(2)平面内任意一条直线与另一个平面不相交,即任意一条直线均与另一个平面平行,则两个平面平行,(2)正确;(3)若不共线的三点中的两点和另一个点分别位于平面的两侧,此时虽然三点到平面距离相等,但两平面相交,(3)错误.本题正确选项:【题目点拨】本题考查面面平行相关命题的辨析,考查学生的空间想象能力,属于基础题.9、C【解题分析】

试题分析:设的零点在区间与图象交点的横坐标所在区间是,故选C.考点:曲线的交点.【方法点晴】本题考曲线的交点,涉及数形结合思想、函数与方程思想和转化化归思想,以及逻辑思维能力、等价转化能力、运算求解能力、综合程度高,属于较难题型.10、D【解题分析】

利用复数代数形式的乘除运算可得z=1﹣3i,从而可得答案.【题目详解】,∴复数z的虚部是-3故选:D【题目点拨】本题考查复数代数形式的乘除运算,属于基础题.11、D【解题分析】

是等腰三角形,若为直角三角形,则,求出圆心到直线的距离,则.【题目详解】圆心为,半径为,,∵为直角三角形,∴,而,∴,即,或4.故选:D.【题目点拨】本题考查直线与圆的位置关系.在直线与圆相交问题中垂径定理常常要用到.12、D【解题分析】试题分析:由可得:,又是递减数列,是递增数列,所以,即,由不等式的性质可得:,又因为,即,所以,即,同理可得:;当数列的项数为偶数时,令,可得:,将这个式子相加得:,所以,则,所以选D.考点:1.裂项相消法求和;2.等比数列求和;二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】

由题意两两垂直,可把三棱锥补成一个长方体,则长方体的外接球就是三棱锥的外接球.由此计算即可.【题目详解】∵平面,∴,又,∴三棱锥可以为棱补成一个长方体,此长方体的外接球就是三棱锥的外接球.由,得,∴,即,,.故答案为1.【题目点拨】本题考查棱锥及其外接球,考查棱锥的体积,解题是把三棱锥补成长方体,则长方体的外接球就是三棱锥的外接球,而长方体的对角线就是球的直径,这样计算方便.14、∃x0【解题分析】

直接利用全称命题的否定得解.【题目详解】“∀x∈R,x2+2x+1>0”的否定是:“∃【题目点拨】本题主要考查了全称命题的否定,属于基础题.15、【解题分析】

根据一元二次方程的判别式和虚数根的模列出不等式组,求得其范围.【题目详解】由已知得,解得;又因为,所以,解得;所以实数的取值范围是故得解.【题目点拨】本题考查一元二次方程的判别式和复数的模,属于基础题.16、【解题分析】

先换元令,平方可得方程,解方程即可得到结果.【题目详解】令,则两边平方得,得即,解得:或(舍去)本题正确结果:【题目点拨】本题考查新定义运算的问题,关键是读懂已知条件所给的方程的形式,从而可利用换元法来进行求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)【解题分析】分析:(1)当时,,求得,令令,解得或,分类讨论即可求解函数的单调性;(2)当时,,由题意,在上恒成立.即在上恒成立,当时,不等式成立;当时,令,求得,分类讨论即可求解.详解:(1)当时,.;令,解得或.∴当,即时,增区间为,减区间为;当,即时,增区间为,无减区间;当,即时,增区间为,减区间为.(2)当时,.由题意,在上恒成立.即即在上恒成立.1)显然时,不等式成立;2)当时,令,则.①当时,只须恒成立.∵恒成立,(可求导证明或直接用一个二级结论:).∴当时,,单减;当时,,单增;∴.∴.②当时,只须恒成立.∵此时,即单减.∴.∴.综上所述,.点睛:本题主要考查导数在函数中的应用,以及不等式的证明,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.18、(1)见解析;(2).【解题分析】分析:⑴先求出,继而,令代入得⑵构造,然后利用已知代入证明详解:(Ⅰ)是偶函数由已知得,∴,,∴,即,所以是偶函数.(Ⅱ)设,则,∴所以,所以在上为增函数.因为,又是偶函数,所以有,解得∴不等式的解集为.点睛:本题证明了抽象函数的奇偶性和单调性,在解答此类题目时方法要掌握,按照基本定义来证明,先求出和的值,然后配出形式,单调性要构造,然后按照已知法则来证明。19、(1);(2)66;(3)有97.5%的把握认为“礼让斑马线”行为与驾龄有关.【解题分析】分析:(1)由表中数据知:,代入公式即可求得,,从而求得违章人数与月份之间的回归直线方程;(2)把代入回归直线方程即可;(3)求得观测值,从而即可得到答案.详解:(Ⅰ)由表中数据知:∴,,∴所求回归直线方程为.(Ⅱ)由(Ⅰ)知,令,则人,(Ⅲ)由表中数据得,根据统计有97.5%的把握认为“礼让斑马线”行为与驾龄有关.点睛:求回归方程,关键在于正确求出系数,,由于,的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误.(注意线性回归方程中一次项系数为,常数项为,这与一次函数的习惯表示不同.)20、(Ⅰ)(Ⅱ)见解析【解题分析】

(Ⅰ)利用奇函数的定义即可求函数f(x)的解析式.(Ⅱ)根据函数的解析式,先画出图象,然后对a(要考虑函数的解析式及单调性)进行分类讨论即可求出函数的值域.【题目详解】(Ⅰ)当x>0时,,又f(x)为奇函数,则当x<0时,f(x)=-f(-x)=-(-x

2-4x)=x

2+4x,又f(0)=0

f(x)解析式为(Ⅱ)根据函数解析式画出函数f(x)的图像,可得f(-2)=-4,当x>0时,由

f(x)=-4,解得x=2+2①当-2<a≤2+2时,观察图像可得函数最小值为f(-2)=-4②当a

>2+2时,函数在[-2,2]上单调递增,在[2,a]是单调递减,由图像可得函数的最小值为f(a)=综上所述:当-2<a≤2+2,最小值为-4;

当a

>2+2时,最小值为

.【题目点拨】本题考查由函数奇偶性求函数解析式,考查函数最值得求法和分类讨论思想的应用.21、(Ⅰ)M=4;(Ⅱ)[1,+∞).【解题分析】分析:(I)存在x1、x2∈[0,2],使得g(x1)﹣g(x2)≥M成立等价于g(x)max﹣g(x)min≥M;(II)对于任意的s、t∈[,2],都有f(s)≥g(t)成立等价于f(x)≥g(x)max,进一步利用分离参数法,即可求得实数a的取值范围;详解:(I)存在x1、x2∈[0,2],使得g(x1)﹣g(x2)≥M成立等价于g(x)max﹣g(x)min≥M∵g(x)=x3﹣x2﹣3,∴∴g

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论